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ABSTRACT   

Expert systems play an important role in medical diagnosis research. Researches are still being conducted 
for building expert systems capable of diagnosing different diseases. Diabetes mellitus is one of the 
diseases that have gained attention in the past years. Patients are usually unaware of having this disease 
and are finally diagnosed with diabetes after several years from onset. Since diabetes can be controlled, 
it is much desirable to harness it at the onset. Therefore, the prediction of onset of diseases like diabetes 
has been the point of interest for the researchers. Researchers are continuously trying to formulate an 
inference engine, a part of an expert system, in order to predict the disease at the beginning. In this paper, 
we present a Bayesian classification approach to identify the onset of diabetes mellitus in patients using 
a well-known data set as the sample. We have found an intriguing result with more than 87% accuracy. 

Keywords: Expert system, diagnosis of disease, pattern recognition, classification, Bayesian classifier. 

1 Introduction  
Expert systems are the special type of systems, which offer the solution of different problems through 
providing suggestions equivalent to human experts in those particular fields [1]. Real-life problems are 
solved using expert systems, specifically the problems that do not have predefined solution in general. 
Expert systems are used in the fields where sufficient amount of human expertise is required. Examples 
are the medical diagnosis of disease, financial advice, designing of products, etc. In the sector like the 
medical diagnosis of diseases, the inference engine of an expert system is built following several 
techniques. Pattern recognition is one of the well-known techniques. 

Pattern recognition and data mining are used in different fields of our life. Especially, these techniques 
are more frequent in military, medical and industrial areas. With the passage of time, data collection and 
analysis have been drastically improved. New technologies contributed in these aspects. Possibilities of 
new researches are dramatically increased. 

Since data analysis has traversed a lot of advancements and is continuously experiencing more, analysis 
of diseases in medical sectors got growth as well. Researchers have been doing research on how to predict 
the onset of diseases before any harm occurs or how to minimize the adversities. 
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However, diabetes is one of the diseases those are under-diagnosed [2]. About one-thirds of the patients 
with diabetes are not aware of their having it. An average of 7years is the period between onset and 
diagnosis. Diabetes is a disease that needs constant monitoring and it could substantially decrease the life 
quality. As other diseases, early diagnosis of diabetes is crucial and can reduce the harm inflicted on the 
body. 

We selected the Pima Indians Diabetes Dataset, available in [3], for building our model to predict the 
onset of diabetes mellitus. The description of the data set is described later. 

We arranged the rest of the paper as follows. Section II discusses the related works in this field. Section 
III is used for describing the methodology of our classification model. Section IV contains the 
implementations. Experimental result and comparative analysis are given in the section V and finally, we 
conclude our work by giving future direction in section VI. 

2 Literature Review 
As it has been noted that researchers are continuously working on predicting diseases at onset, there have 
been several works in this field. Some works are related to the diagnosis of diseases while many are done 
on diabetes itself. 

A method of biomedical signal classification using complex-valued pseudo autoregressive (CAR) modelling 
approach was proposed in [4]. An improvement on traditional multilayer perceptron (MLP) has been 
proposed in [5]. Solely on diabetes, work has been done using principal component analysis (PCA) and 
adaptive neuro-fuzzy adaptive systems in [6]. Generalized discriminant analysis (GDA) and least square 
support vector machine (LS-SVM) was used and a new cascade learning system based on that GDA and 
LS-SVM was proposed in [7].H. Kahramanli et al. presented a hybrid neural network that includes artificial 
neural network (ANN) and fuzzy neural network (FNN) [8]. 

Jack W. Smith et al. used ADAP learning algorithm to discern the onset of diabetes mellitus [9]. Neural 
network is also used for diabetes mellitus prediction in [10]. Again, Bayesian network was implemented 
for prediction of type-2 diabetes in [11]. Besides these, there are more works on disease classification and 
also on diabetes prediction. We only discuss the works that closely resembles our work. 

3 Methodology 
Our approach starts with building a model. After building the model, we train the model with the help of 
training dataset. Then applying the model in test samples we retrieve some predictions. These predictions 
tell us whether a patient or sample is in risk of diabetes mellitus foreknowing the onset. Figure 1 depicts 
the total overview. 

3.1 Expert Systems 
Expert systems consist two essential components: knowledge base and inference engine. A knowledge 
base is a repository for the domain-relevant knowledge. Algorithms for handling the knowledge base are 
the main attributes of an inference engine. A specific expert system is developed using resources from 
various knowledge banks, such as human experts, textbooks, and databases. In our case, the source is 
Pima Indian Database.  
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The knowledge base is subject to changes. Since our concern is not the knowledge base but the inference 
engine, we built the knowledge data set from the above mentioned source. 

 

Figure 1. The approach for building the model for predicting the onset of diabetes mellitus. 

Figure 2 demonstrates the simple architecture of a global expert system. We are focusing on the inference 
part. The inference engine we built follows the Bayesian theorem for predicting disease, in this case, 
diabetes mellitus. 

 

Figure 2. Global architecture of an expert system. 

3.2 Dataset Description 
The Pima Indian population who resides near Phoenix, Arizona was the research population. The National 
Institute of Diabetes, Digestive, and Kidney Diseases has been constantly studying the population since 
1965 because of its high incidence rate of diabetes [12]. Community residents over the age of 21 years 
were asked to undertake a standardized test every two years. The test involved an oral glucose tolerance 
test and some other bodily measurements. Diabetes was diagnosed as per World Health Organization 
(WHO) Criteria [13]. That defined, if the 2-hour post-load plasma glucose was at least 200 mg/dl (11.1 
mmol/l) at any survey test or if the Indian Health Service Hospital serving the community found a glucose 
concentration of at least 200 mg/dl during the time period of routine medical care. The database is being 
used for study by the researchers since its formation. Moreover, this data set provides a well-validated 
data resource to delve into the prediction of the date of onset of diabetes with various techniques. 

Set of Features 
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There are eight features with samples 768 in total. The binary target values 0 and 1 represented ‘tested 
negative’ and ‘tested positive’ 

i. Number of times of pregnancy 
ii. Plasma glucose concentration at 2hours in an oral glucose tolerance test (GTT) 

iii. Diastolic blood pressure (mmHg) 
iv. Triceps skin fold thickness (mm) 
v. 2-hour serum insulin (mu U/ml) 

vi. Body mass index, i.e. weight/height2 (Kg/ m2) 
vii. Diabetes pedigree function 

viii. Age (years) 
ix. Class variable (0 or 1) 

The data set contained all the features including a class variable to defining the class of each sample. There 
are 500 positive cases and the rest 268 are negative. 

3.3 Bayesian Classifier 
Using traditional Bayes theorem, Bayesian classifier classifies unknown samples based on maximum 
likelihood. This is a parametric computational model for solving classification problems. The Bayes 
theorem states the relationship of events as in (1). 

𝑃𝑃(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸|𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐺𝐺) =  𝑃𝑃�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐺𝐺�𝑃𝑃(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐺𝐺)
𝑃𝑃(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸)       (1) 

• 𝑃𝑃(𝐸𝐸) and  𝑃𝑃(𝐺𝐺) are the probabilities of event E and G without regard to each other. 

• 𝑃𝑃(𝐸𝐸 | 𝐺𝐺), a conditional probability, is the probability of event E given that event G is true. 

• 𝑃𝑃(𝐺𝐺 | 𝐸𝐸), a conditional probability, is the probability of event G given that event E is true. 

In the case of naïve Bayesian classifier, the attributes are assumed independent. Not only it is fast and 
easy to compute but also, it is not sensitive to irrelevant data. From Bayes theorem, it can be deduced 
that as in (2).                                                    

        𝑃𝑃(𝐺𝐺|𝐸𝐸) ≈ 𝑃𝑃(𝐸𝐸|𝐺𝐺)𝑃𝑃(𝐺𝐺) (2)  

Naïve Bayesian classifier is reliable for classification and has been used for many years. Since the classifier 
assumes the attributes independent, they do not affect the probability of each other. On the other hand, 
there are some adversities like, bias, variance and training data noise. Training data noise is sometimes 
the result of feature extraction and can be reduced by selecting distinguishing features. 

The formal definition of Naïve Bayesian classifier concisely stands as in (3): 

         𝐶𝐶 = 𝑎𝑎𝑎𝑎𝑎𝑎 max
𝑘𝑘∈{1,2,…,𝐾𝐾}

𝑃𝑃(𝐶𝐶𝑘𝑘)�𝑃𝑃(𝑥𝑥𝑖𝑖|𝐶𝐶𝑘𝑘)
𝑛𝑛

𝑖𝑖=1

  (3)  

where, 

• 𝑃𝑃(𝐶𝐶𝑘𝑘) = probability of class 𝑘𝑘 (prior probabilty) 
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• 𝑃𝑃(𝑥𝑥𝑖𝑖|𝐶𝐶𝑘𝑘) = probability of feature 𝑥𝑥𝑖𝑖 given class 𝑘𝑘 

                                          (class-conditional probability) 

Now, since the attributes are continuous in this case, the likelihood of each class was calculated using the 
probability density estimations of the attributes. Assuming the distribution as normal, the density 
estimation function was defined as in (4). 

           𝜑𝜑µ,σ(𝑥𝑥) =  
1

√2πσ2
𝑒𝑒−

(𝑥𝑥−µ)2
2𝜎𝜎2  (4) 

Density function expresses the relative probability of a point where 𝜇𝜇  is the mean, 𝜎𝜎 is the standard 
deviation, 𝜑𝜑𝜇𝜇,𝜎𝜎(𝑥𝑥) is used for calculating 𝑃𝑃(𝑥𝑥|𝐶𝐶𝑘𝑘). 

The model training was accomplished by estimating the prior 𝑃𝑃(𝐶𝐶𝑘𝑘) and for every attribute 𝐴𝐴𝑖𝑖, for every 
attribute value 𝑣𝑣 of  𝐴𝐴𝑖𝑖estimating 𝑃𝑃(𝐴𝐴𝑖𝑖 = 𝑣𝑣|𝐶𝐶𝑘𝑘).  

Applying the probabilistic model for a given sample with (𝑣𝑣1, 𝑣𝑣2,𝑣𝑣3, … , 𝑣𝑣𝑛𝑛) , the class picked that 
maximized the value of (5). 

        𝑃𝑃(𝐶𝐶𝑘𝑘)�𝑃𝑃(𝐴𝐴𝑖𝑖 = 𝑣𝑣𝑖𝑖|𝐶𝐶𝑘𝑘)
𝑛𝑛

𝑖𝑖=1

 (5) 

Algorithm 1 describes our Bayesian classification algorithm. 

Algorithm 1: Bayesian classification 

i. Input training dataset where each feature vector Xi consists of the feature set {xi1, xi2, ... , xi8}. 

ii. Calculate the prior probability P(Ck) for each class k, where k = 0, 1. 

iii. Calculate the class-conditional probability𝑃𝑃(𝑋𝑋|𝐶𝐶𝑘𝑘)for each class k, where k = 0, 1. 

iv. Input validation dataset. 

v. Calculate the generalization error using the validation dataset. 

vi. Calculate the posterior probability for each class k considering feature vectors Xi consisting 
feature set {xi1, xi2, ..., xi8}. 

vii. Predict the class of each test sample based on the posterior probability of each class k, greater 
probability of positive refers the risk of diabetes mellitus whereas that of negative detects the 
opposite. 

 

4 Implementation 
Implementation of the Naïve Bayes classifier is done using the programming language Java running on 
NetBeans IDE version 8.0.2. The computer system deployed is of the configuration: the processor is Intel 
core i3 CPU 1.90 GHz, size of installed memory (RAM) is 4GB and operating system (OS) is Windows 8.1 
(64-bit OS). 

Since it only requires two parameters from the training sample namely mean and standard deviation, we 
formulated a three-dimensional table to contain the values. The table is referred as “Analysis table” which 
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contains classes along the rows, features along the columns and levels are preserved for the mean and 
standard deviation of the specific feature in that specific class. It is to be mentioned here that the last 
column only contained the prior probability of that class. 

The sample data set was inserted into the classifier and trained with different ratios of training and testing 
samples. As mentioned earlier, the sample data set consists of 768 samples with feature values in the 
form of numerical values. The sample dataset was divided into training data set and test data set. The 
means and standard deviations were calculated using standard formulae and stored in the “Analysis 
table”. Once the classifier is initialized and the mean, standard deviations of features are stored, the 
classifier is ready to classify. 

After building the classifier, test samples were input into the classifier one at a time for classifying. We 
used validation sets of different ratios for validating the training dataset. For classification, the posterior 
probability of each class for every test sample is calculated. The test sample was assigned to the class with 
maximum posterior probability.  

5 Description of Results Found 
We have applied our method to the data set several times. The result we achieved is promising. For 
calculating accuracy, we followed the simple technique of correctness ratio. 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  
𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑛𝑛𝑛𝑛. 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
× 100% 

We have tested the samples with different test-train ratios and found a positive result in increasing the 
training samples. Figure 4 demonstrates the accuracy curve rising along with the increase of training 
samples. When the test-train ratio was 30%-70%, the result we achieved barely met the expectation. 
Increasing the training sample percentage to 80%, the accuracy increased a bit. Nevertheless, increasing 
the training sample to 90% the accuracy had a gradual pickup. It quickly ascends above 85% that is clearly 
more than previous works in this field. Table I summarizes all the results found. The best result we 
obtained is 87.28% for the case of 10-fold cross validation. 

 
Figure 4. Performance curve 
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Table 1. Disease Classification Performance 

Test-Train Ratio Accuracy Average Accuracy 

30% - 70% 

83.12% 

80.74% 
80.95% 
80.09% 
78.79% 

20% - 80% 

86.36% 

82.78% 
82.47% 
77.92% 
84.36% 

10% - 90% 

88.31% 

87.28% 
87.01% 
86.12% 
87.69% 

 

6 Comparative Discussion of Results 
Due to the limitation of data, i.e. deficiency of samples, disease prediction does not seem to be much 
robust. Still, we achieved a promising result by following our approach. In comparison to other works, it 
would not be an overstatement that our work gives satisfactory results. Yang Guo et al. proposed Naïve 
Bayes network yielded an accuracy of 72.3% [11]. Jack W. Smith et al. achieved an accuracy of 76% [10]. 
Again, K. Polat et al. considerably tried to gain more accuracy through SVM. They could achieve an 
accuracy of 82.05% [7]. S. Karatsiolis achieved 82.2% accuracy using modified support vector machine 
[14]. Mohammad Amine Chikh et al. raised the mark to 82.69% in their work [15]. H. Kahramanli achieved 
an accuracy of 84.24% [8] using ANN and FNN. Table II compares different results obtained over the 
dataset using various methods. 

Table 2. Comparative Analysis 

Reference Classifier Accuracy 
[11] Bayes Belief Network 72.3% 
[10] Neural Network 76% 
[7] Support Vector Machine 82.05% 

[14] Modified Support Vector Machine 82.2% 
[15] Fuzzy K-Nearest Neighbor 82.69% 
[8] ANN and FNN 84.24% 

This paper Proposed Bayesian Classifier 87.28% 

7 Conclusion and Future Works 
In this paper, we have demonstrated a comprehensive approach to predict the onset of diabetes mellitus 
based on a well-known data set. Obtained results are very intriguing. Although our findings show a good 
promise compared to previous works reported in the literature, we still believe there is a chance to 
improve it further with new techniques like ensemble learning, balancing classes, etc. considering. 

As future work, we plan to work with an expert system capable of diagnosing diabetes mellitus robustly. 
For example, the expansion of the sample data set and reduction of the number of features are required 
for the improvement of classification. Work is in progress to integrate feature ranking to reduce the 
feature set and optimize the prediction based on an expanded data set. 
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ABSTRACT   

Solar panel facilities for generating electricity have increased exponentially in the recent years. Dust and 
bird droppings on the solar panels inhibit the energy production. Having people to inspect them and, if 
needed, clean them is expensive and increases the energy cost. In this research paper we introduce a 
robot-server architecture for the purpose of inspecting the panels and cleaning them if there is a need for 
it. The general architecture of the robot consists of a mechanical part, an electromechanical part, an 
electronic part, and a software part. The mechanical and electromechanical parts consist of an all-terrain 
vehicle, two electric brushless motors, a telescopic vision system, and telescopic cleaning system with a 
brush, stepper motors controlling the telescopic vision system, and the telescopic vacuum system with a 
brushless electric motor. The electronic system consists of three electronic speed controllers, navigation 
sensors, a computer board, a hard disk, a transceiver, and an antenna for wireless communication. The 
software consists of a scalable operating system, an intelligent vision system with pattern recognition, a 
communication software system, an intelligent navigation system, and a file server with a database, TLS 
security, network communication software based on UDP, and internet communication based on 
websockets and TCP-IP. In addition to that for street solar lights we designed a PCB board with a sensor 
that activates a mechanism similar to windshield wipers that cleans the glass of the solar panels powering 
the lights automatically when needed. 

Keywords: Robotic Vision, Solar Power Optimization, Pattern Analysis, Autonomous Vehicles. 

1 Introduction  
The energy produced by solar panels keeps increasing yearly. Silicon solar panels produce by Panasonic 
have 22.8% efficiency, making solar panels an economically viable alternative to traditional power. 
Companies like First Solar it has converted 22.1% of the sunlight energy into electricity using experimental 
cells made from cadmium telluride. New semiconductor technologies based on Gallium Arsenide and 
Indium Gallium Nitride (inGan) promise a major improvement over silicon solar panels. Also multi-junction 
solar panels have higher production of electric energy. Gallium nitride Solar panels are relatively 
inexpensive, they last for a considerable amount of time,  and every year we see new large scale 
installations as well as smaller for houses and commercial buildings. Many of these large scale installations 
are in desert environments, where strong winds blow sand and dust onto the panels inhibiting the energy 
productions. In addition to that birds migrating from colder to warmer climates choose the solar panel 
sites as a resting place and the bird droppings on the panels inhibit the energy production. Also small 
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animals with sharp teeth roaming on the solar panel site at night, or using the space under the panels to 
protect themselves from the hot summer days and the cold winter nights cut the cables with their sharp 
teeth thus disabling the panels. Finally vandals throwing stones and other objects through the fence could 
damage the glass or other parts of the panels. 

Having a maintenance crew to look after the panels is an expensive proposition which introduces human 
problems. 

Here we introduce a robot that we named "Helios." Its purpose is to inspect every panel, as well as its 
cable connections, and decide if the panel needs cleaning or not. 

All the pertinent information, which includes the panel id, and the details related to the panel status are 
transmitted wireless to a file server and stored in the data base. For each panel needed cleaning the robot 
returns during the night when the panel does not produce any energy and cleans the panel using the 
brush and the vacuum. 

The robot (figure 1), consists of a mechanical part, an electromechanical part, an electronics part, and a 
software part. 

The mechanical and electromechanical parts consist of an all-terrain vehicle, two electric brushless 
motors, a telescopic vision system, and telescopic cleaning system with a brush, stepper motors 
controlling the telescopic vision system, and the telescopic vacuum system, and a small vacuum system 
with a brushless electric motor. The vacuum system traces the solar panel from top to bottom and cleans 
it.  

 

Figure 1: Prototype of the robot Helios with the folding telescopic support of the vision system consisting of 
four cameras and a noninvasive laser. 

The electronics system consists of three electronic speed controllers, a number of ultrasound sensors, 
navigation sensors, a computer board, a hard disk, a transceiver, and an antenna for wireless 
communications. 

The software consists of a scalable operating system, an intelligent vision system with pattern recognition, 
a communication software system, and an intelligent navigation system. 

The computer mother board has a solid state high capacity hard disc to store the operating system, with 
several gigabytes of memory, a light SQL database with the location of each panel and other panel 
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information. The wireless communication system includes a transceiver, an antenna, an MCU, and 
memory, and a network software system for communication with the file server. The file server contains 
the database holding information about each panel, and about each robot. 

In this research paper we describe the general architecture of the robot, which includes the mechanical 
design, electronics and software architecture.  This research paper is structured as follows: The abstract 
is followed by the introduction which is followed by the background information, which is followed by the 
Robot-server architecture, ending with the conclusion, and the references. 

2 Background information 
Renewable energy represents a large number of energy solutions promising to replace or reduce the 
dependency of energy sources of the past that are not friendly to the environment, and are limited so in 
the future we run the risk to run out of these resources. As more emphasis is placed to research and 
development of new renewable energy technologies that are more efficient, cost effective, and non-
environmentally toxic  to provide energy for our energy needs in our houses, business, street lights, public 
buildings, transportation, communications, and help create clean smart cities with cleaner air, that 
provide a healthier environment. 

Photogrammetry (photo-light, gram-drawing, metry-measuring) has a Greek derivation, and is the 
practice of determining the geometric properties of objects from photographic images. It is dated back to 
nineteenth century when film photography started. The process is as simple as getting the distance 
between two points on a plane parallel to the photographic image plane. Work in stereo photogrammetric 
image enhancement, image processing, and stereo vision started in the later part of the last century. 

Our work pertains to robot-server communication, specialized robot architectures, robot vision, machine 
intelligence and pattern recognition [1-8], robot navigation, and autonomous machines. 

The vision system used in our robot system consists of four cameras on a cross framework. The horizontal 
and vertical dimensions of the cross at the default state are equal. The cross has telescopic components 
so that the cameras could be at different distances from the center. In the center of the cross there is a 
non-invasive laser. The cross is supported by a mechanism that allows the system of four cameras to pan 
and tilt. Each camera is supported by its own pan and tilt mechanism. The Mathematics and analytics of 
the computer vision system are presented in this research as well as the architecture of the robot. 

3 The Robot-Server Architecture 
The Robot-Server architecture is very similar to the server-client paradigm. The server has a data base 
that includes each robot, each panel, and the pathway to each panel, from an origin. The server also 
includes the local area network of the server and robots, the communication software between the server 
and each robot. The robots include the image processing, classification, and the software driving the 
robot, and enabling the robot to perform cleaning, and other functions. The majority of the effort is in the 
software, making the robot to be a specialized computer on wheels. The hardware consists of three parts. 

3.1 The Mechanical Component 
The mechanical component comprises the vehicle which is an all-terrain using an army-tank-like 
continuous track, with two brushless motors, one in each front wheel. Each one of the motors is controlled 
by a separate electronic speed controller. The main reason for this is to enable the robot to make turns. 
Thus in order for the robot to turn left; we increase the speed on the right motor and decrease the speed 
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on the left. The mechanical part also includes a telescopic vision system which provides the input to the 
intelligent software that understands a panel's boundaries and decides if a panel is clean or needs to be 
cleaned. The mechanical part also includes the vacuum and a brush used to loosen material on the panel 
in order for the vacuum to clean the panel. 

The electromechanical system includes the two brushless motors of the vehicle part of the robot, the 
stepper motors of the telescopic vision system, as well as the stepper motors of the telescopic vacuum 
system, and the brushless motor of the vacuum system.  

3.2 The Electronic Component 
The electronic part consists of a printed circuit board (PCB) connected to the four cameras via four BNC 
connections, having a number of sensors used as part of the navigation system, GPS, accelerometer, 
magnetometer, a DSP that takes as input the images obtained by the four cameras via the BNC 
connections, stores the images in four memory chips on board, performs the classification algorithm and 
makes a decision if the panel is clean or needs cleaning. The decision is passed to the transceiver on board 
to transmit it wireless to the file server. The PCB board also contains a control system that uses an ARM 
chip to compress the images obtained by the four cameras, passes them to the transceiver on board which 
transmits them to the file server; a transceiver, a voltage amplifier that amplifies the voltage from 1.5V to 
12V, and an antenna. The PCB board is connected to a computer board via a PCI express connection. 

3.3 The Vision System 
The software consists of the classification algorithm, that takes as input the images of the panel obtained 
by the four cameras, applies the classification algorithm and decides if the panel needs cleaning. The vision 
system also inspects the electric cables underneath the panel and decides if all connections are good or 
not. 

The vision system is part of the robot and it consists of four identical cameras and a non-invasive laser. 
Figure 2, depicts the schematics of our system. The cameras are mounted on a frame having a cross 
configuration. Each leg of the cross is telescopic having the ability to increase or decrease the distance of 
the camera from the laser so that will decrease or eliminate occlusions. The distance of each camera from 
the center of the cross is controlled by a stepper motor and it is always known. The noninvasive laser is in 
the middle of the cross and is equidistant to the four cameras. When distances are to be resolved the 
noninvasive laser is activated and its light is registered by each one of the four cameras. The cameras are 
parallel to one another and also parallel to the laser. During calibration for every pixel in the image space 
registering the laser light dot on the object,  the angle between the line defined by the image center and 
the pixel, and the line defined by the pixel and the laser dot on the object, is computed and stored in a 
lookup table. Thus during the focus on a panel  if  for a camera the laser dot is registered by a certain pixel 
then we know the angle formed by the line between the pixel and the laser dot and the  line between the 
pixel and the camera center.  
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Figure 2: The schematics of our vision system. The vision system consists of four identical cameras and a 
noninvasive laser. The purpose of the system is to resolve distances, and enable the creation of 3-D vision. 

Figure 3 shows each of the four cameras with each own local coordinate system. In the default state the 
laser and the cameras are parallel and the distance of each camera from the laser is fixed. The default 
state is the one we use in order to position the camera system at a fixed distance from the panel. In this 
state the laser dot has exactly the same Z coordinate for each one of the four local camera coordinate 
systems. 

The Z coordinate for a pinhole camera (figure 4), is given by equation 1. If B is the known distance between 
the focal points of cameras 1 and 2 then equation 4 gives an estimate of the distance of the laser focal 
point to the laser dot on the panel. In a similar way we can obtain another estimate of Z from the cameras 
3 and 4. Two estimates of Z can be obtained from cameras 1 and 3, another two from cameras 2 and 3, 
another two estimates of Z from cameras 1 and 4, and finally another two estimates of Z from cameras 2 
and 4. An estimate of Z can be obtained from camera 1 and the laser, similarly another from camera 2 and 
the laser, from camera 3 and the laser, and from camera 4 and the laser. 

 

Figure 3: Each one of the cameras has a local coordinate system ( , , )i i iX Y Z , and an image space coordinate 

system  ( , )i ix y , {1,2,3,4}i∈  . The local coordinates can easily be transformed to a global coordinate system 
via translation and rotation. 

Thus, 14 estimates of the distance of the laser focal point from the laser dot on the panel can be obtained. 

All these estimates are slightly different due to the noise in the system. The average Z   of these fourteen 
estimates is a more accurate estimate of the distance of the vision system from the panel. The DSP of the 
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PCB board computes this distance relatively fast and positions the vision system at a fixed distance above 
the panel. This distance is the same at every inspection of every panel. The details of the geometry and 
formulas are given below. 

The pinhole camera model can also represent the modern CCD or CMOS cameras with the chip replacing 
the film and the center of the lens replacing the pinhole. In figure 4, O is the center pixel of the imager 
chip, and also the center of the local coordinate system. (0,0, )L f   is the lens center, ( , , )P X Y Z  is a 

point in the space projected to the point ˆ( , )P x y  on the imager. Then from the similar triangles ALB∆  

and OaL∆ , if LOλ = , Oa x= , LB Z λ= − , we have: 

Z X
x

λ
λ
−

− = , or 1 XZ
x

λ  = − 
 

                                                                  (1) 

 

Figure 4: Pinhole camera model. L is the camera pinhole or the center of the lens. O is the center of the 
imager, as well as the origin of the local coordinate system ( , , )X Y Z , and the image coordinate system ( , )x y . 

The point ( , , )P X Y Z  is projected to the point ˆ( , )P x y . 

From equation 1 we have: 
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Due to the noise in the system we obtain four different estimates of Z from the four laser-camera 
geometries: two estimates using the geometry of two horizontal and two vertical cameras. Eight different 
estimates of Z can be also obtained using the geometry of any two adjacent cameras. Each one of these 

estimates is a random variable with mean tZ , the true value of the distance, and variance 2
iσ , 

{1,2,...,14}i∈ . According to the central limit theorem the average Z  of these estimates of the distance 

is normally distributed with mean tZ , where tZ  is the true distance, and variance 

14
2

2 1

14

i
i

Z

σ
σ ==

∑
. 

Let ZS  be an estimate of the standard deviation of the random variable Z based on the estimates of the 

true distance, and if we denote by tZ  the true value of Z then the statistic: 
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t

Z

Z Z
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−  

has the t distribution with 13 degrees of freedom. Therefore 
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2 2

tZ t Z Z tα α
− −

− < < +                                                          (5) 

 with probability 1 α−  

Formula 5 provides a measure of how accurate the distances estimated by our system are. For example if 

100cmZ =  and 3cmZS = , then with probability 0.95 (95%) the true distance tZ , is

98.27cm 101.73cmtZ< < . 

4 Experimental Results 
As the robot prototype is still in development, we have directed experimentation and evaluation to testing 
completed components of the software and hardware. 

Table 1 Results of equation 6 from applying Jackknife test on all three groups of sample data [1]. 

 

 

 

 

The energy produced by solar panels declines in proportion to the amount of light blocked by the deposits 
of dust and other contaminants accumulating on the surface of the photovoltaic cells. 

Our current work regarding the classification system employed by the robot to determine if a panel is 
clean or not is based on the Mahalanobis distance, which is the relative, statistical measure of the data 

Group TN FN TP FP Accuracy 
(%) 

Misclassification 
Error 

1 12 0 12 0 100 0 
2 17 3 19 1 90 0.10 
3 17 2 19 0 94.4 0.0526 
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point's distance from a common point. The classifier we developed for the system recognizes the state of 
the panel with accuracy above 90%. 

To evaluate the accuracy of the classification system we obtained sample images from solar panels using 
a camera configuration similar to what will be part of the finalized vision system of the robot. We decided 
to employ three groups of training data, where each group contains one clean sample set and one dirty 
sample set. 

1) The first group contains data from the same panel. 
2) The second group builds upon the first group by incorporating data from another panel with 

similar photovoltaic cell structure. 
3) The third group does not build upon the first and second group. Instead, it incorporates data from 

two panels of similar characteristics, but with a lighter shade of blue than the panels from the 
other groups. 

 

See figure 5 for two samples taken by the vision system of clean and dirty solar panels. 

Then we utilized the jackknifing technique to estimate the precision of the classifier through the formula: 

 
TN TPAccuracy

TN TP FN FP
+

=
+ + +

                                                              (6) 

where TN (true negative)/FN (false negative) are the number of samples correctly/incorrectly classified as 
clean, and TP (true positive)/FP (false positive) are the number of samples correctly/incorrectly classified 
as dirty [1].  

Table 1 shows the experimental results obtained from the sample data. 

Further development, experimentation and evaluation of other components are still in progress for this 
project. The results of the vision system are, however, very promising. 

5 Conclusion 
In this research paper we describe the architecture of a Robot-file server system still in experimental and 
development form, used to recognize if solar panels are dirty and lose energy above a critical value. In 
such cases, the robot cleans the affected panels and transmits this information to the file server in order 
to update the flag on record related to the panel in the database to "cleaned" along with the date it was 
cleaned. 

  

Figure 5: Solar panel samples: left) clean panel; right) dirty panel [1]. 
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The robot software includes a scalable operating system, along with an intelligent navigation system, 
classification software, software driving the cleaning mechanism, and communication software that 
include web socket communication, and network socket communication. 
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ABSTRACT   

In this paper we apply and assess the performance of support vector machine regression (SVR) and 
artificial neural network (ANN) channel estimation algorithms to the reference signal structure 
standardized for LTE Downlink system. SVR and ANN where applied to estimate real channel environment 
such as vehicular A channel defined by the International Telecommunications Union (ITU) in the presence 
of nonlinear impulsive noise. The proposed algorithms use the information provided by the received 
reference symbols to estimate the total frequency response of the time variant multipath fading channel 
in two phases. In the first phase, each method learns to adapt to the channel variations, and in the second 
phase it predicts all the channel frequency responses. Finally, in order to evaluate the capabilities of the 
designed channel estimators, we provide performance of SVR and ANN, which is compared with 
traditional Least Squares (LS) and Decision Feedback (DF). The simulation results show that SVR has a 
better accuracy than other estimation techniques. 

Keywords:  Complex SVR; ANN; nonlinear impulsive noise; OFDM and LTE. 

1 Introduction 
The Long Term Evolution (LTE) is a step towards the fourth generation (4G) of mobile radio technologies 
to obtain higher throughput and to increase the spectral efficiency. Fourth-generation broadband wireless 
multiple access systems have data rate specifications on the order of hundreds of Mb/s. For an LTE system 
with 20 MHz bandwidth, the objective is for the Downlink (DL) and Uplink (UL) peak data rates to require 
100 and 50 Mb/s, respectively [1].   

LTE Downlink uses Orthogonal Frequency Division Multiplex Access (OFDMA) radio interface, that is 
support high data rate capabilities and it is more resilient against severe channel conditions. OFDMA 
technique essentially distributes the symbols of a large number of carriers. By implementing this new 
access technique in the context of mobile broadband transmission, new approaches for time and 
frequency equalization, synchronization and channel estimation are needed. 

Because channel estimation is an important concern of LTE DL, some research results have been 
published, including Least Squares (LS) and Minimum Mean Square Error (MMSE)-based techniques such 
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as [2] and [3] where the authors have studied the performance of two linear channel estimators, the Least 
Squares Error (LSE) and the Linear MMSE (LMMSE).  

In LTE with a time variant highly selective multipath fading channel, where complicated nonlinearities can 
be found (the channel variations in time and in frequency domain are nonlinear in addition to the presence 
of impulsive noise), the accuracy of estimation can significantly decrease by applying the linear process.  

ANN can perform complex mapping between its input and output space and are capable of forming 
complex decision regions with nonlinear decision boundaries [4]. Further, these networks of different 
architectures have found successful application in channel estimation problems because of their nonlinear 
characteristics. ANN is proposed as a channel estimator for QPSK and QAM constellation, respectively in 
[5] and [4]. 

In this paper, we designed first a Back Propagation Algorithm BPA-based ANN channel estimation 
technique for LTE-OFDM system over frequency selective multipath fading channel in the presence of 
nonlinear impulsive noise interfering with reference symbols under high mobility conditions. 

In addition, we designed a complex Support Vector Machine Regression (SVR) based on Radial Basis 
Function (RBF) kernel for channel estimation in LTE DL that maps the input vector from a finite-
dimensional space (the input space) to a higher dimensional Hilbert space (can be infinity) which it is 
provided with a dot product. Training SVR approach is used for channel estimation of highly selective 
multipath channels for OFDMA systems where the LS algorithm was applied in the training step as a 
channel estimator: it uses the obtained estimations as a dataset for training. The idea is to exploit the 
information supplied by the pilot symbols in order to estimate the channel frequency response. 

The organization of this paper is as follows. In section 2, description of LTE Downlink system model is 
given. ANN based LTE channel estimator is introduced in section 3. In section 4, a nonlinear channel 
estimator based on the complex SVR is provided. Simulation results are offered in section 5. Finally, 
section 6 concludes the paper. 

2 LTE Downlink System Model 
The LTE DL system is based on the OFDMA air interface transmission scheme. Figure 1 shows the block 
diagram of the baseband equivalent system model. 

Let us consider an LTE Downlink system which comprises  𝑁𝑁  subcarriers, occupying a bandwidth B. The 
corresponding OFDM system consists firstly of mapping binary data streams into complex symbols by 
means of QAM modulation. Then data are transmitted in frames by means of serial-to-parallel conversion. 
Some pilot symbols are inserted into each data frame which is modulated to subcarriers through the 
Inverse Discret Fourier Transform (IDFT). These pilot symbols are inserted for channel estimation 
purposes. The IDFT is used to transform the data sequence 𝑋𝑋(𝑘𝑘) into time domain signal. 

One guard interval (GI) is inserted between every two OFDM symbols in order to eliminate Inter-Symbol 
Interference (ISI). This guard time includes the cyclically extended part of the OFDM symbol in order to 
preserve orthogonality and eliminate Inter-Carrier Interference (ICI). It is well known that if the channel 
impulse response has a maximum of 𝐿𝐿 resolvable paths, then the GI must be at least equal to 𝐿𝐿 [6]. Thus, 
each OFDM symbol is transmitted in time  𝑇𝑇 and includes a cyclic prefix of duration 𝑇𝑇𝑐𝑐𝑐𝑐. Therefore, the 
duration of each OFDM symbol is  𝑇𝑇𝑢𝑢 = 𝑇𝑇 − 𝑇𝑇𝑐𝑐𝑐𝑐. Every two adjacent subcarriers are spaced by 𝛿𝛿𝛿𝛿 = 1/𝑇𝑇𝑢𝑢. 
The output signal of the OFDM system is converted into serial signal by parallel to serial converter. A 
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complex Additive White Gaussian Noise (AWGN) process  𝑁𝑁 �0,𝜎𝜎𝑤𝑤𝑔𝑔
2 � with power spectral density  𝑁𝑁0/2  is 

added through a frequency selective time varying multipath fading channel. 

 

 Figure 1: Block diagram of the baseband equivalent system model. 

In a practical environment, impulsive noise can be present, and then the channel becomes nonlinear with 
non Gaussian impulsive noise. The impulsive noise can significantly influence the performance of the 
OFDM communication system for many reasons. First, the  time  of  the  arrival  of  an  impulse  is 
unpredictable  and  shapes  of  the  impulses  are  unknown  and  they vary considerably. Moreover, 
impulses  usually  have  very  high  amplitude,  and thus high  energy, which  can be much  greater  than 
the energy of the useful  signal [7]. 

The impulsive noise is modeled as a Bernoulli-Gaussian process and it was generated with the Bernoulli-
Gaussian process function  𝑖𝑖(𝑛𝑛) = 𝑣𝑣(𝑛𝑛) 𝜆𝜆(𝑛𝑛)  where  𝑣𝑣(𝑛𝑛) is a random process with Gaussian distribution 
and power 𝜎𝜎𝐵𝐵𝐵𝐵2 , and 𝜆𝜆(𝑛𝑛) is a random process with probability [8] 

                                              𝑃𝑃𝑟𝑟( 𝜆𝜆 (𝑛𝑛) ) = �𝑝𝑝               𝜆𝜆 = 1
1 − 𝑝𝑝,      𝜆𝜆 = 0.                                                                          (1) 

At the receiver side, and after removing guard time, the discrete-time baseband OFDM signal can be 
expressed as 

                 𝑦𝑦(𝑛𝑛)   = � 𝑋𝑋𝑃𝑃(𝑘𝑘)𝐻𝐻(𝑘𝑘)𝑒𝑒𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑘𝑘

𝑘𝑘∈{Ω𝑃𝑃}

+ � 𝑋𝑋𝐷𝐷(𝑘𝑘)𝐻𝐻(𝑘𝑘)𝑒𝑒𝑗𝑗
2𝜋𝜋
𝑁𝑁 𝑘𝑘𝑘𝑘

𝑘𝑘∉{Ω𝑃𝑃}

+ 𝑤𝑤𝑔𝑔(𝑛𝑛) + 𝑖𝑖(𝑛𝑛)                (2) 

where Ω𝑃𝑃 the subset of 𝑁𝑁𝑃𝑃  pilot subcarriers, 𝑋𝑋𝑃𝑃(𝑘𝑘) and  𝑋𝑋𝐷𝐷(𝑘𝑘) are complex pilot and data symbol 
respectively, transmitted at the 𝑘𝑘𝑡𝑡ℎ frequency and 𝐻𝐻(𝑘𝑘) = 𝐷𝐷𝐷𝐷𝐷𝐷𝑁𝑁{ℎ(𝑛𝑛)}  is the channel's frequency 
response at the 𝑘𝑘𝑡𝑡ℎ subcarrier. Note that, pilot insertion in the subcarriers of every OFDM symbol must 
satisfy the demand of the sampling theory and uniform distribution [9].  

Assuming that ISI are eliminated after DFT transformation, therefore 𝑦𝑦(𝑛𝑛) becomes 

             𝑌𝑌(𝑘𝑘) = 𝑋𝑋(𝑘𝑘)𝐻𝐻(𝑘𝑘) + 𝑊𝑊𝐺𝐺(𝑘𝑘) + 𝐼𝐼(𝑘𝑘) = 𝑋𝑋(𝑘𝑘)𝐻𝐻(𝑘𝑘) + 𝑒𝑒(𝑘𝑘),     𝑘𝑘 = 0,⋯ ,𝑁𝑁 − 1                     (3) 

where  𝑒𝑒(𝑘𝑘) is the residual noise which represents the sum of the AWGN noise  𝑊𝑊𝐺𝐺(𝑘𝑘) and impulsive 
noise  𝐼𝐼(𝑘𝑘)  in the frequency domain, respectively. 

Equation (3) may be presented in matrix notation as follows: 

                                                            𝑌𝑌 = 𝑿𝑿𝑿𝑿ℎ + 𝑊𝑊 + 𝐼𝐼 = 𝑿𝑿𝐻𝐻 + 𝑒𝑒                                                             (4) 
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where   

𝑿𝑿 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑋𝑋(0),𝑋𝑋(1),⋯ ,𝑋𝑋(𝑁𝑁 − 1)� 

𝑌𝑌 =  [𝑌𝑌(0),⋯ ,𝑌𝑌(𝑁𝑁 − 1)]𝑇𝑇                    

                                                        𝑊𝑊𝐺𝐺  =  [𝑊𝑊𝐺𝐺(0),⋯ ,𝑊𝑊𝐺𝐺(𝑁𝑁 − 1)]𝑇𝑇                   

  𝐼𝐼 =  [𝐼𝐼(0),⋯ , 𝐼𝐼(𝑁𝑁 − 1)]𝑇𝑇                       

 𝐻𝐻 =  [𝐻𝐻(0),⋯ ,𝐻𝐻(𝑁𝑁 − 1)]𝑇𝑇                    

       𝑒𝑒 =  [𝑒𝑒(0),⋯ , 𝑒𝑒(𝑁𝑁 − 1)]𝑇𝑇                           

𝑭𝑭 = �
𝐹𝐹𝑁𝑁00 ⋯ 𝐹𝐹𝑁𝑁

0(𝑁𝑁−1)

⋮ ⋱ ⋮
𝐹𝐹𝑁𝑁

(𝑁𝑁−1)0 ⋯ 𝐹𝐹𝑁𝑁
(𝑁𝑁−1)(𝑁𝑁−1)

� 

and                                               𝐹𝐹𝑁𝑁
𝑖𝑖,𝑘𝑘 = � 1

√𝑁𝑁
� 𝑒𝑒𝑒𝑒𝑒𝑒−𝑗𝑗2𝜋𝜋�

𝑖𝑖𝑖𝑖
𝑁𝑁�.                                                                              (5)  

3 ANN Estimation 
Artificial Neural Networks (ANN) are one of the widespread branches of artificial intelligence. They have 
very simple neuron-like processing elements (called artificial neurons or nodes) connected to each other 
by weighting. The weights on each connection can be dynamically adjusted until the desired output is 
generated for a given input. An artificial neuron model consists of a linear combination followed by an 
activation function. Different types of activation functions can be utilized for the network; nevertheless, 
the common ones, which are sufficient for most applications, are the sigmoid and hyperbolic tangent 
functions [10]. 

In the input and hidden layers, neural networks contain neurons with nonlinear activation functions, 
whereas in the output layer, neural networks contain neurons with linear activation functions. ANN has 
multi-layer perceptron (MLP) structure, which uses forward propagation neural network. Various training 
algorithms exist for MLP. In this work, we used the Scaled Conjugate Gradient Backpropagation (SCG) 
algorithm which is based on the conjugate directions. Block diagram of the proposed ANN based 
technique is shown in Figure 2.  

The estimator uses the information provided by the reference symbols to estimate the total channel 
frequency response. At the beginning of the estimation process, the complex signal is split into two parts: 
real and imaginary. These parts are normalized between -1 and +1 before training.  
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 Figure 2: ANN channel estimation trained by Back-Propagation Algorithm. 

The adopted architecture of neural network is chosen after multiple tests of convergence by minimizing 
the learning time and keeping low implementation complexity.   

The output of a single neuron is given by the following equation:   

                                                                       𝐴̂𝐴𝑗𝑗 = 𝑓𝑓 � � 𝑤𝑤𝑗𝑗,𝑖𝑖

2𝑁𝑁𝑃𝑃−1

𝑖𝑖=0

𝑃𝑃𝑖𝑖 + 𝑏𝑏𝑗𝑗�                                                   (6)  

where,  𝐴̂𝐴𝑗𝑗 is the neuron output in the range of (0 ≤ 𝑗𝑗 ≤ 2𝑁𝑁 − 1) since there are 𝑁𝑁  real part and 𝑁𝑁  
imaginary part of 𝐴̂𝐴𝑗𝑗, 𝑤𝑤𝑗𝑗,𝑖𝑖 is a value of the synaptic weight connecting the stimulus 𝑖𝑖 to the neuron 𝑗𝑗,  𝑃𝑃𝑖𝑖, 
is the input stimulus, 𝑏𝑏𝑗𝑗 is the bias of neuron 𝑗𝑗, and 𝑓𝑓 is the neuron  output sigmoid function. The weights 
𝑤𝑤𝑗𝑗,𝑖𝑖 are updated with the SCG backpropagation algorithm.  

The estimator training operation consists of changing the values of interconnection weights using learning 
algorithms for obtaining the desired performance. The learning algorithm in our neural network is the 
efficient gradient back propagation based on the minimization of the average square error (for all 2 𝑁𝑁 
output neurons) expressed as 

                                                                       𝑒𝑒 =
1
𝑁𝑁𝑙𝑙

� � �𝑒𝑒𝑗𝑗𝑙𝑙�
2

 2𝑁𝑁 −1

𝑗𝑗=0

𝑁𝑁𝑙𝑙−1

𝑙𝑙=0

                                                        (7) 

where 𝑒𝑒𝑗𝑗𝑙𝑙 represents the error on the  𝑗𝑗𝑡𝑡ℎ neuron output from the  𝑙𝑙𝑡𝑡ℎ example of training set. 

After completing the training phase, the network uses the input data from the pilot channels to estimate 
all the data channels. Subsequently, the equalization is followed by a decision estimate of the OFDMA 
symbols. For a single training operation, the neural network estimates a large number of OFDM symbols 
corresponding to several radio frames LTE. 

4 Complex SVR estimation 
First, let the OFDM frame contains 𝑁𝑁𝑁𝑁 OFDM symbols which every symbol includes 𝑁𝑁  subcarriers. Then, 
we exploit the index of the pilots in the OFDM symbols in order to estimate the channel frequency 
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responses at these positions. The transmitting pilot symbols are   𝑿𝑿𝑃𝑃 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑋𝑋 (𝑖𝑖,𝑚𝑚 ∆𝑃𝑃)),𝑚𝑚 =
0,1,⋯ ,𝑁𝑁𝑃𝑃 − 1, where  𝑖𝑖  and  𝑚𝑚  are labels in time domain and frequency domain respectively, and ∆𝑃𝑃 is 
the pilot interval in frequency domain.  

The proposed channel estimation method is based on complex SVR algorithm which has two separate 
phases: learning phase and estimation phase. In training phase, we estimate first the subchannels pilot 
symbols according to LS criterion to strike  𝑚𝑚𝑚𝑚𝑚𝑚  [(𝑌𝑌𝑃𝑃 − 𝑿𝑿𝑃𝑃𝑭𝑭ℎ) (𝑌𝑌𝑃𝑃 − 𝑿𝑿𝑃𝑃𝑭𝑭ℎ)𝐻𝐻] [11], as 

                                                                         𝐻𝐻�𝑃𝑃 = 𝑿𝑿𝑃𝑃  
−1 𝑌𝑌𝑃𝑃                                                                     (8) 

where 𝑌𝑌𝑃𝑃 = 𝑌𝑌 (𝑖𝑖,𝑚𝑚 ∆𝑃𝑃)  and 𝐻𝐻�𝑃𝑃 = 𝐻𝐻� (𝑖𝑖,𝑚𝑚 ∆𝑃𝑃)  are the received pilot symbols and the estimated 
frequency responses for the 𝑖𝑖𝑡𝑡ℎ OFDM symbol at pilot positions 𝑚𝑚 ∆𝑃𝑃 , respectively. 

Then, in the estimation phase and by the interpolation mechanism, frequency responses of data 
subchannels will be predicted based on the regression model built in training space. Therefore, frequency 
responses of all the OFDM subcarriers are 

                                                               𝐻𝐻� (𝑖𝑖, 𝑞𝑞 ) = 𝑓𝑓 �𝐻𝐻�𝑃𝑃(𝑖𝑖,𝑚𝑚 ∆𝑃𝑃)�                                                          (9) 

where 𝑞𝑞 = 0,⋯ ,𝑁𝑁 − 1 , and 𝑓𝑓(∙)  is the interpolating function, which is determined by the nonlinear 
complex SVR approach. 

In fact, in a nonlinear deep fading channel, it is necessary to apply the nonlinear complex SVR technique 
for channel estimation since SVM is superior in solving nonlinear, small samples and high dimensional 
pattern recognition [12]. The basic idea of Mercer’s theorem is that a vector in the input space (finite 
dimensional space) can be mapped to a higher dimensional feature space ℋ (possibly infinity) by means 
of nonlinear transformation  𝝋𝝋. However, this transformation usually remains unknown. Hence, only the 
dot product of the corresponding space is required and can be stated as a function of the input vectors as 
following: 

                                                                         𝑲𝑲�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� = 〈𝝋𝝋(𝒙𝒙𝑖𝑖),𝝋𝝋�𝒙𝒙𝑗𝑗�〉                                                            (10)                                                                                       

Such spaces are known as Reproducing Kernel Hilbert Spaces (RKHS) where 𝑲𝑲�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗�  is the kernel that 
satisfy the conditions of Mercer’s theorem (it is the inner product of a Hilbert space). In this paper, we are 
using the Radial Basis Function (RBF) which is expressed as 

                                                                    𝑲𝑲�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗� = exp�−
�𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗�

2

2𝜎𝜎2
�                                                     (11)   

After mapping the input vectors to a higher-dimensional feature space using the nonlinear 
transformation 𝝋𝝋, the linear regression function can be stated as follows: 

                                  𝐻𝐻�(𝑚𝑚 ∆𝑃𝑃) = 𝒘𝒘𝑻𝑻𝝋𝝋(𝑚𝑚 ∆𝑃𝑃) + 𝑏𝑏 + 𝑒𝑒𝑚𝑚,        𝑚𝑚 = 0,⋯ ,𝑁𝑁𝑃𝑃 − 1                                (12)   

where 𝒘𝒘 is the weight vector, 𝑏𝑏 is the bias term well known in the SVM literature and residuals {𝑒𝑒𝑚𝑚} 
account for the effect of both approximation errors and noise. In the SVM framework, the optimality 
criterion is a regularized and constrained version of the regularized Least Squares criterion.  

In general, SVM algorithms minimize a regularized cost function of the residuals, usually the Vapnik’s 𝜀𝜀 −
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 cost function [8].  
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A robust cost function is introduced to improve the performance of the estimation algorithm which is 𝜀𝜀 -
Huber robust cost function [11] [13], given by 

                                      ℒ 
𝜀𝜀(𝑒𝑒𝑚𝑚) =

⎩
⎪
⎨

⎪
⎧

0,                                          |𝑒𝑒𝑚𝑚| ≤ 𝜀𝜀           
1

2𝛾𝛾
(|𝑒𝑒𝑚𝑚|− 𝜀𝜀)2,                  𝜀𝜀 ≤ |𝑒𝑒𝑚𝑚| ≤ 𝑒𝑒𝐶𝐶 

𝐶𝐶(|𝑒𝑒𝑚𝑚|− 𝜀𝜀) −
1
2
𝛾𝛾𝐶𝐶2,      𝑒𝑒𝐶𝐶 ≤ |𝑒𝑒𝑚𝑚|        

                                              (13) 

where 𝑒𝑒𝐶𝐶 = 𝜀𝜀 + 𝛾𝛾𝛾𝛾, 𝜀𝜀 is the insensitive parameter which is positive scalar that represents the insensitivity 
to a low noise level, parameters 𝛾𝛾 and 𝐶𝐶 control essentially the trade-off between the regularization and 
the losses, and  represent the relevance of the residuals that are in the linear or in the quadratic cost zone, 
respectively. The cost function is linear for errors above 𝑒𝑒𝐶𝐶, and quadratic for errors between 𝜀𝜀 and 𝑒𝑒𝐶𝐶. 
Note that, errors lower than 𝜀𝜀  are ignored in the 𝜀𝜀 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  zone. On the other hand, the 
quadratic cost zone uses the  𝐿𝐿2 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  of errors, which is appropriate for Gaussian noise, and the linear 
cost zone limits the effect of sub-Gaussian noise [14]. Therefore, the 𝜀𝜀 -Huber robust cost function can be 
adapted to different types of noise.  

Let us assume that   ℒ 
𝜀𝜀(𝑒𝑒𝑚𝑚) = ℒ 

𝜀𝜀�ℛ(𝑒𝑒𝑚𝑚)� + ℒ 
𝜀𝜀�ℑ(𝑒𝑒𝑚𝑚)�  since  {𝑒𝑒𝑚𝑚}  are complex, where   ℛ(∙)  and 

 ℑ(∙)  represent real and imaginary parts, respectively.  Now, the SVR primal problem can be stated as 
minimizing   

         
1
2

 ‖𝒘𝒘‖2 +
1

2𝛾𝛾
 � (𝜉𝜉𝑚𝑚 + 𝜉𝜉𝑚𝑚∗ )2

 

𝑚𝑚∈𝐼𝐼1

+ 𝐶𝐶 � (𝜉𝜉𝑚𝑚 + 𝜉𝜉𝑚𝑚∗ ) 
 

𝑚𝑚∈𝐼𝐼2

+
1

2𝛾𝛾
 � (𝜁𝜁𝑚𝑚 + 𝜁𝜁𝑚𝑚∗ )2

 

𝑚𝑚∈𝐼𝐼3

                 

+ 𝐶𝐶 � (𝜁𝜁𝑚𝑚 + 𝜁𝜁𝑚𝑚∗ )
 

𝑚𝑚∈𝐼𝐼4

  −
1
2

� 𝛾𝛾𝐶𝐶2
 

𝑚𝑚∈𝐼𝐼2,𝐼𝐼4

                                                                                     (14) 

constrained to 

          ℛ�𝐻𝐻�(𝑚𝑚 ∆𝑃𝑃) −𝒘𝒘𝑻𝑻𝝋𝝋(𝑚𝑚 ∆𝑃𝑃)− 𝑏𝑏� ≤ 𝜀𝜀 + 𝜉𝜉𝑚𝑚                               

          ℑ�𝐻𝐻�(𝑚𝑚 ∆𝑃𝑃)−𝒘𝒘𝑻𝑻𝝋𝝋(𝑚𝑚 ∆𝑃𝑃) − 𝑏𝑏� ≤ 𝜀𝜀 + 𝜁𝜁𝑚𝑚                               

             ℛ(−𝐻𝐻�(𝑚𝑚 ∆𝑃𝑃) + 𝒘𝒘𝑻𝑻𝝋𝝋(𝑚𝑚 ∆𝑃𝑃) + 𝑏𝑏) ≤ 𝜀𝜀 + 𝜉𝜉𝑚𝑚∗                                

             ℑ(−𝐻𝐻�(𝑚𝑚 ∆𝑃𝑃) + 𝒘𝒘𝑻𝑻𝝋𝝋(𝑚𝑚 ∆𝑃𝑃) + 𝑏𝑏) ≤ 𝜀𝜀 + 𝜁𝜁𝑚𝑚∗                                

                                                                  𝜉𝜉𝑚𝑚
(∗), 𝜁𝜁𝑚𝑚

(∗) ≥ 0                                                                                   (15)  

for  𝑚𝑚 = 0,⋯ ,𝑁𝑁𝑃𝑃 − 1, where 𝜉𝜉𝑚𝑚 and 𝜉𝜉𝑚𝑚∗  are slack variables which stand for positive and negative errors 
in the real part, respectively. 𝜁𝜁𝑚𝑚 and 𝜁𝜁𝑚𝑚∗   are the errors for the imaginary parts. 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3 and 𝐼𝐼4 are the set 
of samples for which: 

𝐼𝐼1 ∶  real part of the residuals are in the quadratic zone; 

𝐼𝐼2 ∶  real part of the residuals are in the linear zone; 

𝐼𝐼3 ∶  imaginary part of the residuals are in the quadratic zone; 

𝐼𝐼4 ∶  imaginary part of the residuals are in the linear zone. 
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To transform the minimization of the primal functional (14) subject to constraints in (15), into the 
optimization of the dual functional, we must first introduce the constraints into the primal functional by 
means of Lagrange multipliers to obtain the primal-dual functional. Then, by making zero the primal-dual 
functional gradient with respect to 𝜛𝜛𝑖𝑖, we obtain an optimal solution for the weights  

                                                     𝒘𝒘 = � 𝜓𝜓𝑚𝑚

𝑁𝑁𝑃𝑃−1

𝑚𝑚=0

𝝋𝝋(𝑚𝑚 ∆𝑃𝑃) = � 𝜓𝜓𝑚𝑚

𝑁𝑁𝑃𝑃−1

𝑚𝑚=0

𝝋𝝋(𝑃𝑃𝑚𝑚)                                                    (16) 

where  𝜓𝜓𝑚𝑚 = (𝛼𝛼ℛ,𝑚𝑚 − 𝛼𝛼ℛ,𝑚𝑚
∗ ) + 𝑗𝑗(𝛼𝛼𝐼𝐼,𝑚𝑚 − 𝛼𝛼𝐼𝐼,𝑚𝑚∗ ) with  𝛼𝛼ℛ,𝑚𝑚,𝛼𝛼ℛ,𝑚𝑚

∗ ,𝛼𝛼𝐼𝐼,𝑚𝑚,𝛼𝛼𝐼𝐼,𝑚𝑚∗  are the Lagrange multipliers 
(or dual variables) for real and imaginary part of the residuals and  𝑃𝑃𝑚𝑚 = (𝑚𝑚 ∆𝑃𝑃),  𝑚𝑚 = 0,⋯ ,𝑁𝑁𝑃𝑃 − 1  are 
the pilot positions. 

In order to solve the dual function, we define the Gram matrix as 

                                                𝑮𝑮(𝑢𝑢, 𝑣𝑣) =< 𝝋𝝋(𝑃𝑃𝑢𝑢),𝝋𝝋(𝑃𝑃𝑣𝑣) >= 𝐾𝐾(𝑃𝑃𝑢𝑢,𝑃𝑃𝑣𝑣)                                                   (17) 

where 𝐾𝐾(𝑃𝑃𝑢𝑢,𝑃𝑃𝑣𝑣) is a Mercer’s kernel which represents the RBF kernel matrix which allows obviating the 
explicit knowledge of the nonlinear mapping 𝝋𝝋(∙). A simplified compact form of the functional problem 
can be stated in matrix format by placing optimal solution 𝒘𝒘 into the primal dual functional and grouping 
terms. Subsequently, the dual problem consists of maximizing 

                     𝑚𝑚𝑚𝑚𝑚𝑚 −
1
2
𝝍𝝍𝐻𝐻(𝑮𝑮+ 𝛾𝛾𝑰𝑰)𝝍𝝍 + ℛ�𝝍𝝍𝑯𝑯𝑌𝑌𝑃𝑃� − (𝜶𝜶𝓡𝓡 + 𝜶𝜶𝓡𝓡∗ + 𝜶𝜶𝑰𝑰 + 𝜶𝜶𝑰𝑰∗)𝟏𝟏ℰ                             (18) 

constrained to 

                                                        0 ≤ 𝛼𝛼ℛ,𝑚𝑚,𝛼𝛼ℛ,𝑚𝑚
∗ ,𝛼𝛼𝐼𝐼,𝑚𝑚 ,𝛼𝛼𝐼𝐼,𝑚𝑚∗ ≤ 𝐶𝐶                                                             (19) 

where 𝝍𝝍 = [𝜓𝜓0,⋯ ,𝜓𝜓𝑁𝑁𝑃𝑃−1]𝑇𝑇 ; I and 1 are the identity matrix and the all-ones column vector, respectively; 
𝜶𝜶𝓡𝓡 is the vector which contains the corresponding dual variables, with the other subsets being similarly 
represented. The weight vector can be obtained by optimizing (18) with respect to 𝛼𝛼ℛ,𝑚𝑚,𝛼𝛼ℛ,𝑚𝑚

∗ ,𝛼𝛼𝐼𝐼,𝑚𝑚 ,𝛼𝛼𝐼𝐼,𝑚𝑚∗  
and then substituting into (16).  

Therefore, and after training phase, frequency responses at all subcarriers in each OFDM symbol can be 
obtained by SVR interpolation 

                                                                   𝐻𝐻�(𝑘𝑘) = � 𝜓𝜓𝑚𝑚

𝑁𝑁𝑃𝑃−1

𝑚𝑚=0

𝐾𝐾(𝑃𝑃𝑚𝑚,𝑘𝑘) + 𝑏𝑏                                                         (20) 

for 𝑘𝑘 = 1,⋯ ,𝑁𝑁. Note that, the obtained subset of Lagrange multipliers which are nonzero will provide 
with a sparse solution (and they represent the support vectors). Equation (20) will be used in the 
estimation step to predict the channel for the data symbols. As usual in the context of SVM framework, 
the free parameters of the kernel and the cost function represent limited freedom for the user and have 
to be fixed manually after gaining some a priori knowledge of the problem, or by using some validation 
set of observations [8]. 

5 Simulation results 
In this part of our analysis, we compare the proposed algorithms (ANN with Backpropagation SCG 
algorithm and nonlinear complex RBF-based SVR algorithm) with the LS, Decision Feedback and perfect 
estimation based on Bit Error Rate (BER) and Mean Square Error (MSE) curves. We will analyze the 
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performance of our algorithms in terms of robustness against fading joint with nonlinear noise, and 
complexity. 

We consider the channel impulse response of the time varying multipath fading channel model which can 
be written as 

                                                                 ℎ(𝜏𝜏, 𝑡𝑡) = �ℎ𝑙𝑙(𝑡𝑡) 𝛿𝛿(𝑡𝑡 − 𝜏𝜏𝑙𝑙)
𝐿𝐿−1

𝑙𝑙=0

                                                           (21) 

where ℎ𝑙𝑙(𝑡𝑡) is the impulse response representing the complex attenuation of the 𝑙𝑙𝑡𝑡ℎ  path,  𝜏𝜏𝑙𝑙   is the 
random delay of the 𝑙𝑙𝑡𝑡ℎ path and 𝐿𝐿 is the number of multipath replicas. The specification parameters of 
an extended vehicular A model (EVA) for LTE DL system with the excess tap delay and the relative power 
for each path of the channel are shown in table 1. These parameters are defined by 3GPP standard [15]. 

Table 1.  Extended Vehicular A model (EVA) [15]. 

Excess tap delay [ns] Relative power [dB] 
0 0.0 

30 -1.5 
150 -1.4 
310 -3.6 
370 -0.6 
710 -9.1 

1090 -7.0 
1730 -12.0 
2510 -16.9 

 

Figure 3 presents the variations in time and in frequency of the channel frequency response for a mobile 
speed equal to 350 Km/h.  

 

Figure 3: Variation in time and in frequency for a mobile speed at 350 Km/h. 

In order to demonstrate the effectiveness of the presented techniques and evaluate the performance in 
the presence of nonlinear impulsive noise under high mobility conditions (350Km/h),  two objective 
criteria are used: the signal-to-noise ratio (SNR) and signal-to-impulse ratio (SIR). 

The expressions of SNR and SIR are given by [8] 

URL:http://dx.doi.org/10.14738/tmlai.44.2145                    44 
 

http://dx.doi.org/10.14738/tmlai.44.2145


Transact ions on  Machine  Learn ing and  Art i f i c ia l  Inte l l igence Volume  4 ,  No  4,  August 2016 
 

                                        𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝐸𝐸{|𝑦𝑦(𝑛𝑛) −𝑤𝑤(𝑛𝑛) − 𝑖𝑖(𝑛𝑛)|2}

𝜎𝜎𝑤𝑤2
�                                   (22)   

and 

                                        𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝐸𝐸{|𝑦𝑦(𝑛𝑛) −𝑤𝑤(𝑛𝑛) − 𝑖𝑖(𝑛𝑛)|2}

𝜎𝜎𝐵𝐵𝐵𝐵2
�                                   (23)   

Then, we simulate the OFDM LTE DL system with parameters presented in Table 2. The proposed 
algorithms estimate a number of OFDM symbols in the range of 1400 symbols, corresponding to 10 radio 
frames LTE. Note that, the LTE radio frame duration is 10 ms [16], which is divided into 10 subframes. Each 
subframe is further divided into two slots, each of 0.5ms duration, as presented in Figure 4. 

Table 3.  Parameters of simulations [16], [17] and [18]. 

Parameters Specifications 
OFDM system LTE/Downlink 
Constellation 16-QAM 

Mobile Speed (Km/h) 350 
𝑇𝑇𝑠𝑠 (µs) 72 
𝑓𝑓𝑐𝑐 (GHz) 2.15 
𝛿𝛿𝛿𝛿 (KHz) 15 
B (MHz) 5 

Size of DFT/IDFT 512 
Number of paths 9 

The variation of BER and MSE as a function of SNR in the presence of AWGN noise for a mobile speed at 
350 Km/h is shown in Figs. 5 (a) and (b). The complex RBF-based SVR method slightly outperforms ANN 
with Backpropagation SCG algorithm and noticeably outperforms LS and DF methods. For example, we 
can see a gain of 10 dB over the DF method. We can also see that the SVR and ANN performances are 
close to the perfect channel knowledge estimation compared to others estimation techniques. These 
results demonstrate the advantage of the nonlinear complex SVR and its ability to adapt to the channel 
variations, providing a better channel estimation which gives an improvement of the service quality in LTE 
DL. MSE confirms the results obtained for BER and shows that LS suffers from a high MSE, however, 
complex SVR and ANN have low MSE. 

 

Figure 4: LTE frame structure 
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(a) 

 
(b) 

Figure 5: (a) BER and (b) MSE vs. SNR for a mobile speed at 350 Km/h without impulsive noise. 

Figs. 6 (a) and (b) show the performance of LS, DF, ANN and complex SVR estimation techniques in the 
presence of AWGN noise and nonlinear impulsive noise with SIR = -5dB and p = .05 for a mobile speed at 
350 Km/h. A poor performance is exhibited by LS and DF for all noise levels and good performance is 
observed with complex SVR which still track the estimation with perfect channel and also outperforms 
ANN. The MSE performance among these techniques ranges from best to the worst as follows: complex 
RBF-SVR based technique; SCG-ANN based technique, DF and LS. 

 
(a) 

 
(b) 

Figure 6: (a) BER and (b) MSE vs. SNR for a mobile speed at 350 Km/h with SIR = -5 dB and p = .05. 

Figs. 7 (a) and (b) show the BER and MSE performances of LS, DF, ANN and complex SVR techniques in the 
presence of non-Gaussian impulsive noise with p = .05 for SNR = 30 dB as a function of SIR which is ranged 
from -20 to 20 dB. These figures confirm that nonlinear complex SVR algorithm performs better than LS, 
DF and also ANN algorithms in high-mobility environments presenting high levels of impulsive noise (SIR<0 
dB), which proves that the RBF-SVR based approach is powerful in the nonlinear environments. 

6 Conclusion 
In this paper, we analyzed the performance of the scaled conjugate gradient backpropagation ANN and 
the complex RBF-based SVR algorithms for the channel estimation in the LTE DL system. These methods 
are based on two steps: the learning step where each method tries to adapt to the channel variations and 
constructs the regression model and the estimation step where the channel frequency response will be 
estimated. 

The proposed methods where applied to vehicular A channel model according to 3GPP specifications in 
the presence of nonlinear impulsive noise interfering with OFDM pilot symbols in high-mobility 
environment. The simulation results clearly show that the nonlinear complex RBF-based SVR method 
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produces a good performance when compared to LS, Decision Feedback and ANN. The obtained results 
are very promising for improving the service quality in the LTE DL system. We still work on adopting this 
technique as channel estimator in LTE-Advanced systems. 

 
(a) 

 
(b) 

Figure 7: (a) BER and (b) MSE vs. SIR for a mobile speed at 350 Km/h with SNR = 30 dB and p = .05. 

REFERENCES 

[1]. Dahlman, E., S. Parkvall, J. Skold and P. Berning, 3G Evolution-HSPA and LTE for mobile broadband.  2nd 
edition 2008, New York: vol. Academic. 

[2]. Colieri, S., M. Ergen, A. Puri and A. Bahai. A study of channel estimation in OFDM systems. In Proceedings 
of the IEEE 56th Vehicular Technology Conference, 2002, vol. 2: p. 894–898. 

[3]. Colieri, S., M. Ergen, A. Puri and A. Bahai. Channel estimation techniques based on pilot arrangement in 
OFDM systems. IEEE Transactions on Broadcasting, 2002, vol. 48, no. 3: p. 223–229.  

[4]. Patra, J. C., R. N. Pal, R. Baliarsingh and G. Panda. Nonlinear channel equalization for QAM signal 
constellation using artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 1999, 
vol. 29, no. 2, p. 254–262. 

[5]. Naveed,  A., I. M. Qureshi, T. A. Cheema, and A. Jalil. Blind equalization and estimation of channel using 
artificial neural network, 8th International Multitopic Conference, INMIC, 2004, p. 184–190. 

[6]. Fernández-Getino García, M. J., J. M. Páez-Borrallo, and S. Zazo. DFT-based channel estimation in 2D-pilot-
symbol-aided OFDM wireless systems. IEEE Vehicular Technology Conf., 2001, vol. 2, p. 815–819. 

[7]. Sliskovic, M. Signal processing algorithm for OFDM channel with impulse noise. IEEE conf. on Electronics, 
Circuits and Systems, 2000, p. 222–225. 

[8]. Rojo-Álvarez, J. L., C. Figuera-Pozuelo, C. E. Martínez-Cruz, G. Camps-Valls, F. Alonso-Atienza, M. Martínez-
Ramón. Nonuniform interpolation of noisy signals using support vector machines. IEEE Trans. Signal 
process., 2007, vol. 55, no.48, p. 4116–4126. 

[9]. Nanping, L., Y. Yuan, X. Kewen, and Z. Zhiwei. Study on channel estimation technology in OFDM system. 
IEEE Computer Society Conf., 2009, p. 773–776. 

[10]. Çiikli, C., A. T. Özsahin, A. C. Yapici. Artificial neural network channel estimation based on Levenberg-
Marquardt for OFDM systems. Wireless Pers. Commun., 2009, p. 221–229. 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 47 
 



Anis Charrada and Abdelaziz Samet; Support Vector Machine Regression and Artificial Neural Network for Channel 
Estimation of LTE Downlink in High-Mobility Environments. Transactions on Machine Learning and Artificial 
Intelligence, Volume 4 No 4 August (2016); pp: 36-48 

 

[11]. Charrada, A and A. Samet. Estimation of highly selective channels for OFDM system by complex least 
squares support vector machines. Int. J. Electron. Commun. (AEÜ), 2012, vol. 66, p. 687-692. 

[12]. Nanping, L., Y. Yuan, X. Kewen and Z. Zhiwei. Study on channel estimation technology in OFDM system. 
IEEE Computer Society Conf., 2009, p. 773–776. 

[13]. Charrada, A and A. Samet. Nonlinear Complex LS-SVM for Highly Selective OFDM Channel with Impulse 
Noise. 6th International Conference on Sciences of Electronics, Technologies of Information and 
Telecommunications (SETIT), 2012, p. 696-700. 

[14]. Fernández-Getino García, M. J., J. L. Rojo-Álvarez, F. Alonso-Atienza, and M. Martínez-Ramón. Support 
vector machines for robust channel estimation in OFDM. IEEE signal process. J., 2006, vol. 13, no. 7.  

[15]. 3rd Generation Partnership Project. Technical Specification Group Radio Access Network:   evolved 
Universal Terrestrial Radio Access (UTRA): Base Station (BS) radio transmission and reception. TS 36.104, 
September 2009, V8.7.0. 

[16]. 3rd Generation Partnership Project. Technical Specification Group Radio Access Network: evolved 
Universal Terrestrial Radio Access (UTRA): Physical Channels and Modulation layer. TS 36.211, September 
2009, V8.8.0. 

[17]. 3rd Generation Partnership Project. Technical Specification Group Radio Access Network:  Physical layer 
aspects for evolved Universal Terrestrial Radio Access (UTRA). TR 25.814, September 2006, V7.1.0. 

[18]. 3rd Generation Partnership Project. Technical Specification Group Radio Access Network: evolved 
Universal Terrestrial Radio Access (UTRA): Physical layer procedures. TS 36.213, September 2009, V8.8.0,  

 

 

 

URL:http://dx.doi.org/10.14738/tmlai.44.2145                    48 
 

http://dx.doi.org/10.14738/tmlai.44.2145


 
 

 

Application of Genetic Algorithms Coupled with Neural 
Networks to Optimization of Reinforced Concrete Footings  

1Jiin-Po Yeh and 2Shu-Yu Yeh 
Department of Civil and Ecological Engineering, I-Shou University, Kaohsiung, Taiwan 

1jpyeh@isu.edu.tw, 2abcd781031@gmail.com 

ABSTRACT 

This paper first applies genetic algorithms to optimally design reinforced concrete isolated footings 
subjected to concentric loading. Based on the ACI Building Code, constraints are built by considering wide-
beam and punching shears, bending moment, allowable soil pressure, the development length for 
deformed bars and clear distance between deformed bars. Design variables consist of the width, length 
and thickness of the footing and the number of bars in the long and short directions, all of which are 
discrete. The objective function is to minimize the cost of steel and concrete in the footing. There are 
totally 144 cases of reinforced concrete isolated footings considered. The optimal results are randomly 
divided into three groups for the use of neural networks: training data, validation data and testing data. 
Two kinds of artificial neural networks are employed in this paper: two-layer feedforward 
backpropagation networks and radial basis networks. Linear regression analysis between the network 
outputs and targets of the testing data is performed to judge the accuracy of the neural networks. 
Numerical results show that the feedforward backpropagation network is very effective and has high 
accuracy with the correlation coefficients and the slope of the regression line being close to one and the 
y-intercept close to zero. Besides, it is better than the radial basis networks and needs much fewer 
neurons in the hidden layer.  

Keywords: Reinforced Concrete Isolated Footings; Genetic Algorithms; Feedforward Backpropagation 
Networks; Radial Basis Networks.  

1 Introduction 
Genetic algorithms are a heuristic search that is based on natural selection and natural genetics. It was 
inspired by the evolution theory of “survival of the fittest,” which can solve both constrained and 
unconstrained optimization problems according to the “natural selection.” The constraints used in genetic 
algorithms can be in the form of linear equality or inequality with bounds on the optimization variables. 
The concept of genetic algorithms was formally introduced in 1970s by Professor John Holland at the 
University of Michigan, who in 1975 published the ground-breaking book “Adaptation in Natural and 
Artificial System” [1] that led to many important discoveries. In 1989, Goldberg described in more detail 
the theory of genetic algorithms and its applications [2]. From then on, the continuing price/performance 
improvements of computational systems have made genetic algorithms more attractive and popular. 
Genetic algorithms have successfully been applied to many fields like engineering, economics, chemistry, 
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manufacturing, mathematics, physics and so on. In the civil engineering, there are a lot of applications, 
such as optimal design of reinforced concrete beams [3], optimal design of planar and space structures 
[4], multiobjective optimization of trusses [5], reliability analysis of structures [6], global optimization of 
grillages [7], global optimization of trusses with a modified genetic algorithm [8], optimization of pile 
groups using hybrid genetic algorithms [9] and optimization of grid shell topology and nodal positions 
[10].  

Artificial neural networks are a computational tool based on the properties of biological neural systems, 
which have been considered to be simplified models of neural processing in the brain. The artificial neural 
network was originated by McCulloch and Pitts in 1943 [11], who claimed that neurons with binary inputs 
and a step-threshold activation function were analogous to first order systems. In 1986, Rumelhart et al. 
[12] proposed the theory of parallel distributed processing and developed the most famous learning 
algorithm in ANN-backpropagation, which uses a gradient descent technique to propagate error through 
a network to adjust the weights in an attempt to reach the global error minimum, marking a milestone in 
the current artificial neural networks. Since then, a huge proliferation in the ANN methodologies has been 
taking place. In particular there are many applications to the civil engineering, such as structural 
optimization [13-15], damage identification of structural elements [16], frame optimization [17], traffic 
sign classification [18], optimal design of continuous reinforced concrete beams [19], etc.   

Owning to the abilities of genetic algorithms to deal with highly nonlinear constraints and neural networks 
to build very complicated nonlinear relationships between inputs and outputs, this paper combines these 
two techniques to optimally design the reinforced concrete isolated footings. Based on the provisions of 
the ACI Building Code Requirements for Structural Concrete and Commentary [20], the constraints of 
genetic algorithms are constructed, considering the wide-beam and punching shears, bending moment, 
allowable soil pressure and the development length for deformed bars. The design variables are the 
effective depth, width and length of the footing, the areas of bending reinforcements in the long and short 
directions; the object is to find the minimum cost of concrete and steel. 

2 Discrete Optimization  
Most optimization approaches were focused on and developed for continuous variables. However, the 
variables are usually discreet for design problems. Genetic algorithms are simple and extremely capable 
in solving discrete optimization problems. Hence, this paper adopts genetic algorithms provided by the 
MATLAB Global Optimization Toolbox [21] to optimally design reinforced concrete beams with discrete 
variables. There are three major components in the operation of genetic algorithms: (1) creating a random 
initial population of designs (individuals); (2) combining the individuals in the population in order to 
produce better individuals; (3) obtaining a new generation of designs and going to the next step. Each 
individual is real-coded in this paper, which is composed of the design variables. To create the new 
population, the algorithms performs the following steps: (1) Score each individual of the current 
population by computing its fitness value; (2) Scale the raw fitness scores to convert them into a more 
usable range of values; (3) Select individuals, called parents, based on their fitness. The lower the value of 
the fitness function, the more opportunity it has to be selected; (4) Choose some elites from the current 
population that have lower fitness function values. These elite individuals are just passed to the next 
population; (5) Produce children from the parents. Children are produced either by making random 
changes to a single parent—mutation—or by combining the vector entries of a pair of parents—crossover; 
(6) Replace the current population with the crossover and mutation children and elites to form the next 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 19 
 

http://en.wikipedia.org/w/index.php?title=Neural_processing&action=edit&redlink=1


Jiin-Po Yeh and Shu-Yu Yeh; Application of Genetic Algorithms Coupled with Neural Networks to Optimization of 
Reinforced Concrete Footings. Transactions on Machine Learning and Artificial Intelligence, Volume 4 No 4 August 
(2016); pp: 18-35 

 

generation. The algorithm stops when one of the stopping criteria is met, such as the number of 
generation, the weighted average change in the fitness function value over some generations less than a 
specified tolerance, no improvement in the best fitness value for an interval of time, etc.  

The optimization problem of the reinforced concrete isolated footing is constituted as follows:  

Minimize the fitness function f(x)  

such that 

Ci(x)≤0,  i=1,…, m 

Ci(x)=0,  i=m+1,…, mt                                                                      (1) 

LB≤x≤UB 

where Ci(x) represents the nonlinear inequality and equality constraints, m is the number of nonlinear 
inequality constraints, mt is the number of nonlinear constraints, f(x) is the total cost of concrete and 
tension steels, and LB and UB are the vectors of lower and upper bounds of design variables, respectively. 
The Global Optimization Toolbox based on MATLAB uses the augmented Lagrangian genetic algorithm 
[22, 23] to solve nonlinear constraint problems with bounds. A subproblem is formulated by combining 
the fitness function and nonlinear constraint functions using the Lagrangian and the penalty parameters. 
A sequence of such optimization problems are approximately minimized using the genetic algorithm such 
that the bounds are satisfied. A subproblem formulation is defined as 
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where the components λi of the vector λ are nonnegative and known as Lagrange multiplier estimates. 
The elements si of the vector s are nonnegative shifts, and ρ is the positive penalty parameter. The 
algorithm begins by using initial values for the parameters. Parameters si and λi are updated based on the 
value of Ci(x). The genetic algorithm minimizes a sequence of the subproblem, which is an approximation 
of the original problem. When the subproblem is minimized to a required accuracy, the Lagrangian 
multiplier estimates are updated, or the penalty parameter is increased by a penalty factor. These steps 
are repeated until the stopping criteria of the genetic algorithm are met.  

3 Artificial Intelligence 
An artificial neural network is an analytical system that addresses problems without explicit solutions or 
whose solutions are very difficult to explicitly formulate. The neural network is composed of some 
computational units, called neurons, which are highly interconnected. Every interconnection has strength, 
called weight, which is represented by a number. The basic capability of neural networks is to learn 
patterns from a large number of examples by adjusting the weights of each neuron. The learning can be 
supervised or unsupervised. In this paper, the Neural Network Toolbox based on MATLAB is employed 
[24] and two kinds of artificial neural networks are used: the feedforward backpropagation and the radial 
basis. Both of them are supervised neural networks, which are briefly illustrated as follows. 
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3.1 The Feedforward Backpropagation Network 
The most commonly used neural network is the feedforward neural network with the backpropagation 
learning algorithm. The network discussed in this paper has two layers: one hidden layer and one output 
layer, whose structure is shown in Figure 1. The transfer function of the single hidden layer is the tan-
sigmoid function defined by  
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                                                       (3) 

where k is the number of the artificial neurons, ni=wi1P1+ wi2P2+…+wiRPR+ bi, P1, P2,…PR are the inputs, R is 
the number of input elements, wi1 , wi2 ,…, wiR  are the weights connecting the input vector and the ith 
neuron, and bi is the bias of the ith neuron in the hidden layer. The output  

 

 

 

 

 

 

 

 

 

Figure 1 Two-layer feedforward backpropagation neural network with multiple outputs. 

layer uses the linear transfer function defined by  

qiNNfQ iii ,...,2,1,)( ===                                                       (4) 

where Ni=Wi1a1+ Wi2a2+……+Wikak+ Bi, Wi1,Wi2,…,Wis are the weights connecting the neurons of the hidden 
layer and the ith neuron of the output layer, and Bi is the bias of the ith output neuron. 

There are many variations of the backpropagation algorithm aiming to minimize the network performance 
function, i.e., the mean square error between the network outputs and the targets defined by 
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where tj and aj are the jth target and network output, respectively. Among many training functions, the 
Levenberg-Marquardt algorithm [25, 26] was chosen to minimize the network performance function. The 
formula to update the weights and biases is given by  

    eJIJJXX TT
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O1 

a1 

B1 

b1 b2 

Bq … 

… 

Oq O2 

B2 

HN1 HN2 

ON1 ON2 ONq 

a2 

w11 w12 

wk1 

w21 
w22 

w1R 

w2R wkR 

wk2 

wk1 

W11 W12 W21 

Wq1 

W22 
Wq2 W1k 

W2k Wqk 

Output  
Layer 

Hidden 
Layer 

Input 

ak 

bk 
HNk 

P2 PR P1 … 
w11 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 21 
 



Jiin-Po Yeh and Shu-Yu Yeh; Application of Genetic Algorithms Coupled with Neural Networks to Optimization of 
Reinforced Concrete Footings. Transactions on Machine Learning and Artificial Intelligence, Volume 4 No 4 August 
(2016); pp: 18-35 

 

where Xk is a vector of current weights and biases, J is the Jacobian matrix of the first derivative of the 
error vector e between the network outputs and target outputs with respect to the weights and biases, I 
is a unit matrix and µ is a parameter. If µ→0, Eq. (6) can be simplified as   

    eJHXeJJJXX T
k

TT
k1k [ 11] −−

+ −≈−=                                                        (7) 

which is the quasi-Newton’s method with the approximate Hessian matrix H [33]; if µ→∞, Eq. (6) turns 
out to be  

    eJXX T
k1k

1−
+ µ−=                                                                         (8) 

which is the gradient descent method with the learning rate µ-1 [24]. Therefore, this algorithm interpolates 
between the quasi-Newton’s algorithm and the gradient descent method. If a tentative step increases the 
performance function, the parameter µ will be increased, causing this algorithm to act like the gradient 
descent method, while it shifts toward Newton’s method if the reduction of the performance function is 
successful, i.e., the parameter µ will be decreased. In this way, the performance function will always be 
reduced at each iteration of the algorithm. To improve the network generalization, the error on the 
validation set is monitored simultaneously during the training process. When the network begins to 
overfit the training data, the error on the validation set typically begins to rise. Once the validation error 
increases for a specified number of iterations (The default value set by MATLAB is six), the training 
terminates and the weights and biases at the minimum of validation error are returned.  

The number of neurons required in the hidden layer is usually unknown beforehand. Bayesian 
regularization [27] provides a measure of how many network parameters (weights and biases) are being 
effectively used by the network. According to this effective number of parameters, the number of neurons 
required in the hidden layer of the two-layer neural network can be estimated by the following equation 

      (Rk+k)+(kq+q)= Num                                                                        (9) 

where R and q are the number of elements in the input and output vectors, respectively, k is the number 
of neurons to be determined in the hidden layer, and Num is the effective number of parameters found 
by the Bayesian regularization implemented by the function trainbr in MATLAB. 

3.2 The Radial Basis Network 
For comparison with the feedforward backpropagation network, this paper uses another network, the 
radial basis network that has two layers: the radial basis layer and output layer. The transfer function in 
the artificial radial basis neuron is the radial basis function defined by 

      
2

)( nenradbasa −==                                                                    (10) 

as shown in Figure 2, where n=
bPw −

is the vector distance (Euclidean distance) between the weight 
vector w and the input vector P multiplied by the bias b. As the distance between w and P decreases, the 
output increases. Thus the radial basis function acts as a detector that produces 1.0 whenever the input 
is identical to the weight vector. Each bias in the radial basis layer is set to be 0.8326/SPREAD, which 

causes radial basis function to output 0.5 when 
Pw −

= +/- SPREAD. The larger the constant SPREAD is, 
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the smoother the radial basis function will be. The constant needs to be large enough so that several radial 
basis neurons respond to overlapping region of the input space and have fairly large output at any given 
instant, but not so large that all the neurons respond in essentially same manner [24]. Different SPREADs 
are usually tried to find the best value for a given problem. There are two functions in MATLAB to design 
the radial basis network: newrb and newrbe.  

 

Figure 2 Radial basis function 

3.2.1 The Design Function newrb  

The function newrb iteratively creates one radial basis neuron at a time. At each iteration, the input vector 
that results in lowering the network error is used to create a radial basis neuron. Neurons are added to 
the network until the sum-squared error falls beneath an error goal or maximum number of neurons has 
been reached.  

3.2.2 The Design Function newrbe 

The function newrbe can produces a network with zero error on the training vectors. It creates as many 
radial basis neurons as there are input vectors, and each neuron acts as detector for a different input 
vector. The drawback to newrbe is that it produces a network with as many hidden neurons as there are 
input vectors. For this reason, it does not return an acceptable solution when many input vectors are 
needed to properly define a network, as is typically the case.  

To make the above-mentioned neural networks more efficient, it is often useful to scale inputs and targets 
so that they will always fall within a specific range. For example, the following formula  

1)(2 −
−

−
=

minmax
minxy                                                                         (11) 

is used in this paper to scale inputs and targets, where x is the original value, y is the scaled value, and 
max and min are the maximum and minimum of inputs or targets, respectively. Eq. (11) produces inputs 
and targets in the range [-1, 1]. To evaluate the performance of the trained network, this paper makes 
use of a regression analysis between the network outputs and the corresponding targets.  

4 Design of Reinforced Concrete Isolated Footings 
The reinforced concrete isolated footings considered in this paper are loaded concentrically, as shown in 
Figure 3, with width B, length L and thickness h. The dead and live loads transmitted by the column are 
denoted by PD and PL, respectively. The column size is a×b. A variety of reinforced concrete isolated 
footings are optimally designed by the genetic algorithm. The objective function is to minimize the total 
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cost of the concrete and the tension reinforcements in the long and short directions of the rectangular 
isolated footing. All the constraints required to design the isolated footing comply with the ultimate-
strength design of ACI 318-08 Code, considering wide-beam and punching shears, bending moment and 
the development length for deformed bars. The units of force and length in the following formulas are kgf 
(=9.81N) and cm, respectively. 

4.1 Shear 
The shear strength of the isolated footing in the vicinity of column reactions is governed by the more 
severe of the following two conditions: 

 
(a)                                     (b) 

Figure 3 The isolated footing: (a) elevation and (b) plan. 

4.1.1 Wide-beam Shear 

The critical section is assumed to extend in a plane across the entire width and lies at a distance d from 
the face of the column, as shown in Figure 4(a). The nominal shear strength of this section is                   

BdfV cc ′= 53.01                                                                             (12)  

or  

       LdfV cc ′= 53.02                                                                             (13) 

where d is the effective depth of the footing. The constraints for wide-beam shear are  

11 )
2

( cuu VBdaLqV φ≤−
−

=                                                                (14) 

and 

22 )
2

( cuu VLdbBqV φ≤−
−

=                                                             (15) 

where qu = (1.2PD+1.6PL)/(BL) is the factored net soil pressure and φ =0.75 is the strength reduction factor 
for shear.      
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4.1.2 Punching Shear 

The critical section occurs at a distance d/2 from the face of the column, as shown in Figure 4 (b). The 
maximum allowable nominal shear strength is the smallest of the following three equations 

dbfV

dbf
b

d
V

dbfV

cc

c
s

c

c
c

c

0

0
0

0

06.1

)
265.0

53.0(

,)06.153.0(

′=

′+=

′+=

α
β

                                                       (16) 

where βc = long side a/short b of the column, b0 = perimeter of the critical section ijkl and αs = 40, 30 and 
20 for interior, edge and corner columns, respectively. In this paper, interior columns are considered; 
therefore, αs = 40. Similarly, the constraint for the punching shear is 

       min,)])(([ cuu VdbdaBLqV φ≤++−=                                                      (17) 

where Vc,min is the smallest of Eqs. (16). The area to be considered for factored shear Vu is equal to the 
total area of the footing less the area ijkl. 

 
(a) 

 
(b) 

Figure 4 Critical sections: (a) wide-beam shear and (b) punching shear 

4.2 Bending Moment 
Let Ab be the cross-sectional area of the reinforcement steel and NL and NB be the number of steels in the 
long and short directions of the footing, respectively. The critical section for bending moment is at the 
face of the column and the constraints are  

       )
)85.0(2

()
2

(
2

2

Bf
fAN

dfANaLBqM
c

ybL
ybLmLuuL ′

−≤
−

= φ                                           (18) 

and 

       )
)85.0(2

()
2

(
2

2

Lf
fAN

dfANbBLqM
c

ybB
ybBmBuuB ′

−≤
−

= φ                                       (19) 

where φmL and φmB are the strength reduction factor for moment. Let εt be the tensile strain of the 
reinforcement, then  
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       9.0
005.0

25.065.0or65.0
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ε−ε
+=φφ≤ mBmL                                        (20)  

To prevent sudden failure with little or no warning when the beam cracks or fails in a brittle manner, the 
ACI code limits the minimum and maximum amount of steel to be 

        )
7
3(85.0

max,min,
y

c
sLbLsL f

BdfAANA β′
=≤≤                                               (21) 

and  

    )
7
3(85.0

max,min,
y

c
sBbBsB f

LdfAANA β′
=≤≤                                                (22) 

where β is the stress block depth factor,   

       )14,
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c
sL f
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f

f
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′
≥                                                 (23) 

and     

       )14,
8.0

(maxmin,
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c
sB f

LdLd
f

f
A

′
≥                                                (24)  

The formula for AsL,max in Eq. (21) or AsB,max in Eq. (22) is derived based on the requirement that the tensile 
strain must be greater than or equal to 0.004. In addition, both the steel ratios NLAb/(Bh) and NBAb /(Lh) 
must exceed the minimum value required for temperature and shrinkage: 0.0018 for grade 60 deformed 
bars and 0.002 for grade 40 or 50 deformed bars.  

4.3 Allowable Soil Pressure 
Suppose that the allowable soil pressure under the base of the footing is qa. The gross soil pressure must 
not exceed the allowable soil pressure, that is,  

  afsc
LD qhDhw

BL
PP

≤−γ++
+ )(                                                          (25) 

where Df is the distance from the base to the ground surface, as shown in Figure 3, wc is the weight of 
concrete and γs is the unit weight of soil over the footing. 

4.4 Development of Reinforcement 
According to the ACI Code, the equation for the development length of bars in tension is  

c

etyb
d f

fd
′

λψψ
=

15.0
                                                                         (26) 

for No. 6 and smaller bars with clear spacing not less than 2db and clear cover not less than db , where db is 
the bar diameter, and ψt and ψe are the bar location and coating factors, respectively.  In this paper ψt and 
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ψe are assumed to be 1.0. For normal weight concrete, λ=1. The critical section for development-length 
of the bars in tension is the same as the critical section in flexure, that is, at the face of the column. Hence,  

       0.5(L-a) - concrete cover ≥ d                                                             (27) 

and 

       0.5(B-b) - concrete cover ≥ d                                                           (28) 

The equation for the development length of bars in compression is  

        )0043.0,
075.0

(max yb
c

yb
dc fd

f
fd

′
=                                                    (29) 

The dowel bars stressed to fy are required to transfer the axial compression force in the column into the 
footing, as shown in Figure 5; hence, there should be minimum extension of the dowels  

 

Figure 5 Dowels that transfer the column load to the footing slab.into the footing. Therefore, the thickness h 
of the footing must satisfy the following constraints: 

 h – concrete cover - 2db (footing bars) - db (dowels)   ≥ dc                              (30)  

4.5 Reinforcement Distribution and Clear Distance 
In the short direction of the footing, a central band of width B shall contain the major portion of flexural 
reinforcement according to the formula 2NB/(L/B+1) but rounded up to the nearest integer and uniformly 
distributed along the band width. The remainder is also uniformly distributed outside the central band. 
The reinforcement in the long direction is uniformly distributed across the entire width of the footing. The 
clear distance s between individual steel bars both in the long and short directions must satisfy  

  )5.2,2()45,3( cmdMaxscmhMin b≥≥                                             (31) 

5 Numerical Results 
The given design conditions for the isolated footing are as follows: the concentric dead load PD, the live 
load PL applied to the column, the allowable soil pressure qa at the base of the footing, the distance from 
the footing bottom to the ground surface Df, the compressive strength of concrete cf ′ , and the yield stress 

of steel fy. In addition, the column size is assumed to be 0.45 m×0.45 m, the unit weight of soil over the 
footing is 2000 kgf/m3, and the unit weight of concrete is 2400 kgf/m3. In Taiwan, the unit prices of 
concrete and steel are 1900 NT$/m3 and 18.4 NT$/kgf, respectively. The concrete cover for the 
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reinforcement of the footing is assumed to be 7.5 cm. The optimal results obtained from genetic 
algorithms consist of the minimum cost of the footing, the thickness h, width B and length L of the footing, 
and the number of steel bars in the long and short directions, NL and NB, respectively. Based on the often-
used materials and customs in Taiwan, this paper selects two kinds of yield strength fy of the tension 
reinforcement: 2800 kgf/cm2 (40 ksi) and 4200 kgf/cm2 (60 ksi) as well as two kinds of compressive 
strength f′c of the concrete: 210 kgf/cm2 (3000 psi) and 280 kgf/cm2 (4000 psi). There are three kinds of 
qa: 25 ton/m2, 30 ton/m2 and 35 ton/m2; three kinds of Df: 1.0 m, 1.5 m and 2.0 m; four kinds of dead load 
PD: 60 ton, 80 ton, 100 ton and 120 ton as well as four kinds of PL: 40 ton, 60 ton, 80 ton and 100 ton. 
There are totally144 kinds of footings being designed depending on the combination of the six given 
conditions. For the purpose of training, monitoring and testing the neural networks, the optimal data are 
divided into 3 groups: 100 training sets (70%), 22 validation sets (15%) and 22 testing sets (15%). The 
fitness function is the total cost in New Taiwan Dollars of the footing reinforcement and concrete. All the 
constraints are built according to the formulas discussed in Sec. 4.  

5.1 Genetic Algorithms 
This paper adopts the MATLAB global optimization toolbox to carry out genetic algorithms. To run genetic 
algorithms of the MATLAB software, some parameters need to be selected beforehand. After a number 
of trials, here are the values used in this paper: The population size is set to be 100, crossover rate 0.8, 
and elite number 6. Furthermore, all the individuals are encoded as integers; “Rank” is used as the scaling 
function that scales the fitness values based on the rank of each individual; “Roulette” is the selection 
function to choose parents for the next generation; “Two-point crossover” is used as the crossover 
method to form a new child for the next generation; The “Adaptive Feasible Function” is chosen as the 
mutation function to make small random changes in the individuals and ensure that linear constraints and 
bounds are satisfied. The steel bars used in the footing can usually range from No. 5 to No. 10. In order to 
decide the appropriate size of steel bars to be used in this paper, different sizes of reinforcement bars are 
tried for a variety of random combinations of fy, cf ′ , PD, PL, qa and Df. The results show that No. 5 bars 

always lead to the minimum cost. Therefore, No. 5 steel bars are used in each direction of the footing and 
as dowels that transfer the column load to the footing slab. Taken as an example, Table 1 shows the results 
for the case of fy =2800 kgf/cm2, cf ′ =210 kgf/cm2, PD = 120 ton, PL= 100 ton, qa =35 ton/m2 and Df =1 m.  

Table 1 The optimal results for different sizes of reinforcement bars for the case of fy =2800 kgf/cm2, cf ′ =210 
kgf/cm2, PD = 120 ton, PL= 100 ton, qa =35 ton/m2 and Df =1 m.  

Size of bars h(m) B (m) L(m) NB NL cost(NT$103) 

5 0.65 2.27 2.96 42 32 14.343 

6 0.66 2.31 2.91 29 23 14.573 

7 0.66 2.31 2.91 22 17 14.624 

8 0.66 2.27 2.96 17 13 14.655 

9 0.67 2.27 2.96 13 10 14.683 

10 0.67 2.47 2.82 10 9 15.383 
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5.2 Feedforward Backpropagation Networks 

The inputs of the artificial neural network consist of six elements: fy, f′c, PD, PL, qa and Df , and the targets 
also have six components: the minimum cost, h, B, L, NB, NL and the cost. To make the network more 
efficient, all the data are normalized by using Eq. (11) or the function mapminmax introduced in the 
MATLAB software for neural network. The function trainbr is first applied to find the number of effective 
parameters required for the network, which is found to be 118.9, as shown in Figure 6; therefore the 
number of neurons required in the hidden layer is 8.685 according to Eq. (9), which is then rounded up to 
9. After the number of neurons needed in the hidden layer is determined, a very efficient training function 
trainlm, i.e., the Levenberg-Marquardt algorithm, is used to train the network. While the network is being 
trained, the training and validation data are both put into the network. During the training process, the 
network error for training data will decrease, while the network error for the validation data decreases 
first but increases later on. To avoid overfitting the data, the training will terminate when the network 
error of the validation data increases continuously for a number of epochs whose default value is six set 
by the MATLAB software. The training process is shown in Figure 7, where there are totally 23 epochs but 
the weights and biases at the epoch 17 are taken as those of the trained network. The value of the 
performance function at the epoch 17 is 0.0019623. After the normalized data are reversed to the original 
scale, the six network outputs and targets for the testing data are presented in Figs. 8-13. The 22 sets of 
testing data containing inputs and targets as well as outputs are shown in Tables 2(a) and 2(b), 
respectively. If more neurons in the hidden layer are used, for example, 12 neurons, the accuracy of the 
network can only improve a little bit, not significantly. Tables 3 shows the linear regression analysis results 
for the testing data when the hidden layer has 9 and 12 neurons, where parameters m, b and r stand for 
the slope of the straight line, the intercept with the vertical axis and correlation coefficient, respectively. 
Table 3 indicates that the networks with 9 neurons and 12 neurons in the hidden layer have almost the 
same accuracy. Based on the Figs. 8-13 and Table 3, the performance of the network is considered quite 
good on the whole, because the parameters m and r are close to one and parameter b also close to zero. 

  

Figure 6 The number of effective parameters in 
the network obtained from the training function 

trainbr 

Figure 7 The training process for the feedforward 
backpropagation neural network with 9 neurons in 

the hidden layer 
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Figure 8 Outputs and targets of the footing thickness 
h for the testing data with 9 neurons in the hidden 
layer of the feedforward backpropagation network 

Figure 9 Outputs and targets of the footing width B 
for the testing data with 9 neurons in the hidden 

layer of the feedforward backpropagation network 

  
Figure 10 Outputs and targets of the footing Length L 

for the testing data with 9 neurons in the hidden layer 
of the feedforward backpropagation network 

Figure 11 Outputs and targets of the number of steel 
bars in the short direction for the testing data with 9 

neurons in the hidden layer of the feedforward 
backpropagation network 

 

 

Figure 12 Outputs and targets of the number of 
steel bars in the long direction for the testing data 

with 9 neurons in the hidden layer of the feedforward 
backpropagation network 

Figure 13 Outputs and targets of the total cost 
for the testing data with 9 neurons in the hidden 

layer of the feedforward backpropagation network. 
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Table 2(a) Inputs and targets of the testing data with 9 neurons in the hidden layer of the feedforward 
backpropagation network.  

 Data 
index  

Inputs Targets 
fy 

(kg/cm2) 
cf ′  

(kg/cm2) 
PD 

(ton) 
PL 

(ton) 
qa 

(ton/m2) 
Df 

(m) 
h 

(cm) 
B 

(cm) 
L 

(cm) 
NB 

 
NL 

 
Cost 

(NT$103) 
1 4200 280 120 100 35 2 61 251 285 25 22 12.585 
2 4200 280 100 80 25 2 56 275 315 25 22 13.972 
3 4200 280 80 60 30 2 48 211 257 17 15 7.478 
4 4200 280 80 60 25 1.5 48 237 271 18 16 8.812 
5 4200 280 80 60 25 1 48 229 268 18 16 8.469 
6 4200 210 100 80 30 2 59 236 296 25 20 11.876 

  7 4200 210 100 80 25 2 60 258 336 29 22 15.000 
8 4200 210 80 60 35 1.5 50 199 224 16 14 6.377 
9 4200 210 80 60 30 1.5 51 209 250 18 15 7.624 

10 4200 210 60 40 35 1.5 47 199 224 15 13 5.982 
11 2800 280 120 100 30 2 62 278 308 41 37 17.397 
12 2800 280 120 100 25 1 62 293 331 44 39 19.723 
13 2800 280 100 80 25 1 55 266 297 35 31 14.189 
14 2800 280 80 60 35 2 47 197 231 22 20 6.897 
15 2800 280 80 60 35 1 47 194 220 22 19 6.476 
16 2800 280 80 60 30 1.5 47 214 244 24 22 7.990 
17 2800 210 120 100 25 1.5 67 302 336 49 44 22.422 
18 2800 210 100 80 30 1.5 59 228 295 37 29 12.957 
19 2800 210 80 60 35 2 50 191 238 25 20 7.333 
20 2800 210 80 60 35 1.5 50 189 233 24 20 7.090 
21 2800 210 80 60 25 1 52 221 278 30 24 10.319 
22 2800 210 60 40 25 1.5 42 200 229 19 17 6.106 

Table 2(b) Network outputs of the testing data with 9 neurons in the hidden layer of the feedforward 
backpropagation network 
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Table 3 The linear regression analysis of targets and outputs for the testing data with 9 and 12 neurons in the 
hidden layer of the feedforward backpropagation network.  

No. of neurons 
in the hidden 

layer 

Outputs 
(targets) m (slope) b (y-intercept) r (correlation 

coefficient) 

9 

h 1.0008 0.0044 0.9975 
b 0.9767 -0.0029 0.9933 
L 1.0168 -0.0069 0.9861 

NB 1.0191 0.0048 0.9973 
NL 0.9825 -0.00001 0.9985 

Cost 1.0031 0.0073 0.9992 

12 

h 0.9755 -0.001 0.9983 
b 0.9687 -0.0001 0.9908 
L 1.0113 0.0089 0.9906 

NB 0.9787 -0.0036 0.9966 
NL 0.9965 -0.0001 0.9986 

Cost 1.0019 0.0025 0.9996 
 

5.3 Radial Basis Networks 
There are two kinds of design functions for the radial basis network: newrb and newrbe. The newrbe 
produces as many number of radial basis neurons as the input vectors; therefore, it has zero error 
between the network output and target, while the newrb creates one neuron at a time until the preset 
mean square error between the network outputs and the targets or the number of epochs are reached. 
Because the radial basis network does not require the validation data, only training and testing data are 
considered. For comparison, these two sets of data are intended to be the same as those of feedward 
backpropagaton with 9 neurons in the hidden layer.    

5.3.1 The Function newrb  

The mean square error between the network outputs and targets is set to be 0.0019623, which is the 
same as the result of the feedforward backpropagation. Let the parameter SPREAD change from 1.0 to 
2.0 and train the network for each case. By observing the regression analysis of the network outputs and 
targets, all of them show very good performance, while the network with SPREAD=1.6 is a little bit better 
than other values; therefore, SPREAD=1.6 is selected for the radial basis layer. From the training process, 
it is found that 44 epochs are required for the mean square error to fall beneath the goal of 0.0019623; 
therefore, 44 radial basis neurons are created for the network. The testing data are then substituted into 
the trained network. The linear regression analysis of the six network outputs and targets is shown in 
Table 4, where the correlation coefficients are between 0.9801 and 0.9939. Tables 3 and 4 indicate that 
the performance of the radial basis network is a little inferior to the feedforward backpropagation 
network.   
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Table 4 The linear regression analysis of the outputs and targets for the testing data using newrb with 
SPREAD=1.6.  

 

5.3.2 The Function newrbe  
The default value for the mean square error is set to be zero. In order to compare with the newrb function, 
let SPREAD =1.6. Because the network can achieve zero error, all the training data will lead to the exactly 
fitting regression model with the parameters m = r = 1 and b = 0. Then, substitute the testing data into 
the trained network. The linear regression analysis of the six network outputs and targets for the testing 
data is shown in Table 5, where the correlation coefficients are between 0.9656 and 0.9983.  

Table 5 The linear regression analysis of the outputs and targets for the testing data using newrbe with 
SPREAD=1.6. 

Outputs 
(Targets)   

 
Parameters 
 

h B L NB NL Cost 

m 1.0406 0.9772 1.1108 1.0522 0.9823 1.0433 
b -0.0042 -0.0073 0.0241 0.0182 -0.013 0.0152 
r 0.9942 0.9819 0.9656 0.9903 0.9944 0.9983 

6 Conclusions 
This paper first applies the genetic algorithm to engage in the optimal design of the reinforced concrete 
isolated footings. There are 144 different isolated footings being designed, the results of which are used 
as the training, validation and testing data of the artificial neural networks. From the numerical results, 
the principal conclusions may be summarized as follows:  

(1) According to the effective number of parameters obtained from the trainbr function, this paper 
only uses 9 neurons in the hidden layer for the feedforward backpropagation network. Even if 
more neurons are used in the hidden layer, the accuracy does not improve significantly. The 
correlation coefficients between the network outputs and targets range from 0.9861 to 0.9992 
for testing data. In addition, the slope of the regression line is close to 1 and the intercept with 
the vertical axis close to zero. The results suggest very good performance of the feedforward 
backpropagation network.  

(2) The parameter SPREAD=1.6 is the most suitable value for the newrb design function of the radial 
basis network. The correlation coefficients between the network outputs and targets range from 
0.9801 to 0.9939 for testing data. On the whole, its performance is a little inferior to the 
feedforward backpropagation network. Besides it needs more radial basis neurons in the hidden 
layer. If the newrbe function is used, the results of the regression analysis are similar to newrb, 
although it can reach zero error during the training process. 

Outputs 
(Targets)   

 
Parameters 
 

h B L NB NL Cost 

m 0.9971 0.9488 1.0194 0.9775 0.9676 0.9747 
b -0.029 -0.0303 -0.0225 -0.0297 -0.0301 -0.0269 
r 0.9913 0.9826 0.9801 0.9899 0.9930 0.9939 
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(3) After the artificial neural network is trained, it can serve as a model to optimally design the 
reinforced concrete isolated footings effectively and efficiently. For practical purposes, the 
outputs of the neural network can be rounded up to the nearest whole number. 
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