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ABSTRACT   

Delivery of the medications is one of the important biomedical applications. It has significant importance 
for patients. There are a lot of methods for delivery of drugs such as oral, topical, sublingual, inhalation, 
and nasal and injection routes. Patients are suffering from needles every time they want to take their 
medications. The oral route is suitable and has the lowest cost, but some drugs can 
cause gastrointestinal tract irritation and has low bioavailability. Delivery of the medications through 
skin is the most suitable for patient because it is needleless without any pain for patients. Some 
medications have large size. Mathematical model for transportation of large molecules of medications 
and drugs through the skin is described. This model provides a significant reduction of medical 
complications and improvement in patient compliance. One of the most important parameter is the 
optimization of the response time of this model. The model shows good stability and response. 

Keywords: Biomedical Applications; Medications; Mathematical model; Patients; Skin. 

1 Introduction 
Medications are very important to patients, they used for diagnosing, treatment, or preventing illness. 
There are many routes for medications delivery such as oral, topical, sublingual, inhalation, and 
injection. The most used methodologies for medications delivery are the oral and injection routes, but 
injection is painful for patients [1-7]. 

The oral route is the most suitable and has the lowest cost [8, 9]. Some drugs can cause gastrointestinal 
tract irritation.  

The injection route encompasses intravenous (IV), intramuscular (IM), and subcutaneous (SC) 
administration [10]. Injections act rapidly, with onset of action in 15–30 seconds for IV, 10–20 minutes 
for IM, and 15–30 minutes for SC [11]. Disadvantages of injections include pain for the patient, and the 
requirement of trained staff. A hypodermic needle is used for rapid delivery of liquids, or when the 
injected substance cannot be ingested, such as with insulin because it cannot be absorbed [12, 13].  

Jet injection uses the principle of application of high velocities. This principle is such that the drug 
formulation is propelled from the reservoir at a high speed, bombarding the skin surface and abrading it 
then creating superficial micro pathways in the skin. The injection of medications using jet affects flow 
by increasing velocity, decreasing pressure, and increasing momentum. The penetration using the jet 
damages the skin with its diameter but less than damage of needle [14-16].  
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The diffusion of medications and drugs through the skin is preferable to injection because it is non-
invasive and can be self-administered. This results in a significant reduction of medical complications 
and improvement in patient compliance. The diffusion is the movement of the solute from high to low 
concentrations of the solute in the solvent. The microparticles in the fluid are affected by the diffusion 
force and it will be move based on this force. In general, a small particle diffuses faster than a larger one 
[17-20]. 

Transdermal patch is used for systemic delivery. It uses a micro needle which penetrate outer layer of 
skin then let solution to diffuse to lower layers through the new pores generated by micro needles [20, 
21]. 

In this paper, mathematical model for transportation of medications and drugs through the skin without 
pain is described. This model provides a significant reduction of medical complications and improvement 
in patient compliance. This mathematical model uses medical principle for hypoproteinemia according 
to abnormality of hydrostatic pressure and principles of mass transfer through a porous diaphragm. 

Hypoproteinemia is common complication of Nephrotic Syndrome. Nephrotic Syndrome is not a specific 
illness, but a group of clinical manifestations relate with kidney. Healthy kidneys regulate blood 
pressure, secrete hormone and purify blood. When kidneys are damaged, they will fail to do these jobs 
well, because of a series of symptoms appear. Hypoproteinemia refers to a condition where there is an 
abnormally low level of protein in the blood. In normal condition, when blood flows through kidney, 
some substances like protein can be kept in the body. However, when kidney structure is damaged, 
protein will leak into urine and thus form proteinuria. Long-term and severe protein leakage results in 
hypoproteinemia easily. One of main cause of this disease is hyper blood pressure which increase 
hydrostatic glomeruli pressure (HGP). This leads to pass of high molecular weight proteins according to 
increase diameter of pores [14, 22-24]. 

2 Mathematical Methodology 
The proposed mathematical model for transportation of medications and drugs through the skin 
provides a significant reduction of medical complications and improvement in patient compliance. This 
model uses medical principle for hypoproteinemia according to abnormality of hydrostatic pressure and 
principles of mass transfer through a porous diaphragm.  

For applying this model, there are three mainly steps: 

1- Increase the diameter of skin pores by using a specific value of hydrostatic pressure come from 
blower and controlled by a valve (according to molecular weight of drug), the new pores will be 
in a very small scale (molecules scale). 

2- Transportation of the drug solution through new pores and control the rate of the 
transportation by hydrostatic pressure (could be critical one or higher with limits to control 
damage). 

3- Skin recovery: The skin recovery is a property of skin which enables pores to get its original 
diameter. With small scale, the recovery period will be very small. 

C O P Y R I G H T ©  S O C I E T Y  F O R  S C I E N C E  A N D  E D U C A T I O N  U N I T E D  K I N G D O M  2  
 



Nourelhoda Medhat Mahmoud, Ziad Tarek Alshafee; The Mathematical Model for Drug Delivery Through Skin. Journal of Biomedical 
Engineering and Medical Imaging, Volume 5, No 2, April (2018), pp 1-7 
 

2.1 Mechanism 
As the main mechanism of nephron in kidney, the mechanism should include hydrostatic pressure 
source, making suitable pores of diaphragm (skin), inner design, and controlling from all sides (power 
source, on and off, pressure).  

 1. Hydrostatic pressure source 

It will be from a microblower. The blower is considered as the source for the required force.  

                                                                     F=P/A                                                                                             (1) 
Where: F is the required force, P is the hydrostatic pressure, and A is the cross-section area.  

The specs of the microblower that be used are: Pressure is up to 1.5 Kpa, Dimension is 20 x 20 x 1.8 mm, 
Power is from 10 to 20 V. 

2. Inner design:   

As shown in Figure 1, one-way valve is used as a safety valve and helps in keeping pressure constant, 
isolator is considered as mass (m) used to prevent blower air from mixing with solution, solution storage 
is used to keep a specific amount of solution, and skin interface is considered as a non-invasive interface 
with skin. 

 
Solution passing through skin is represented as dumper (as in the principle of mass transfer) with 
gamma factor because they have the same principal. Gamma is considered as overall factors and it 
represents diffusion constant, skin conditions, and any other effective factors.  Gamma can be 
calculated experimentally and given for user as a numerical value. Therefore, change in the distance (X) 
can be calculated. It represents the dosage.   

3- Microcontroller 

Any microcontroller will be used such as Arduino, arm or raspberry pi to control two main things: 

Turn on blower for a specific duration till reach a specific pressure then turn off the blower. 

Opening the valve to get back the pressure to its normal state after finishing of injection and as a safety 
for pressure. 

In addition, microcontroller will be used for controlling the sensor, showing results, and user interface. 

4- Transfer function and the mathematical model 

                                                                                                                                                             (2) 

Where Z is mechanical impedance, M is isolator mass in (Kg), and  is injection factor in (N.s/m). 

 
 

Figure 1. The schematic of the proposed model. 
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The injection factor  is related to effective condition of skin (as surface area, physical conditions of skin, 
type of drug, position of injection …… etc.). This factor could be measured experimentally then its range 
become a given to user in manual of device. 

                                                                                                                                     (3) 

Where X is output distance in (m), F is input force in (N).  

Assume the input force (F) from blower could be represented as unit step function with a gain K. 

By compensation at equation (3); 
 

                                                                                                                                            (4) 

                                                                                                                        (5) 

                                                                                                                                       (6) 

By using partial fraction 

                                                                                                                     (7) 

                                                                                                           (8) 

By using inverse of Laplacian 

                                                                                                                                             (9) 

                                                                                                                      (10) 

3 Results and Discussions 
One of the most important parameter is the optimization of the response time for the proposed model. 
The response time depends on different parameters according to model equation (10).   

After constructing the model and make simulation using MATLAB program, the model shows good 
stability and response. 

It was leading the series of the simulations of the process with changing the values of the injection 
factor ( ). It can be observed that at M = 0.005 Kg, K = 1.13 N, and at different values of  = 500, 1000, 
and 200 N.s/m, by increasing value of gamma it takes more time to reach final value, as shown in Figure 
2. Model equation (10) showed that the response time is inversely proportional to the injection factor 
( ).  
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It was leading the series of the simulations of the process with changing the values of force gain factor 
(K). It can be observed that at M = 0.005 Kg,  = 300 N.s/m, and at different values of K = 0.8, 1.13 and 2 
N, by increasing value of K it takes less time to reach final value, as shown in Figure 3. Also, it can be 
observed that the model equation (10) showed that the response time is proportional to the force gain 
factor (K).  

 

4 Conclusions  
Mathematical model for transportation of medications and drugs through the skin is derivative and 
described. This model provides a significant reduction of medical complications and improvement in 
patient compliance. The model shows good stability and response. The response time depends on 
different parameters according to model equation (10) such as the injection factor ( ) and force gain 
factor (K). This model is cheap and reliable.  The proposed study is simulated by MATLAB program.  

The results are demonstrated the proposed study based on a clear procedure. This study is positively led 
to decrease the patient’s pain. In our future works, our study will be used practical experiments.  
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ABSTRACT 

Generation of 3-D tissue models from medical imagery is useful for surgical planning and computer 
simulations, but often requires some amount of manual effort.  In this work, we use the clustering 
algorithm, DBSCAN, in concert with a 3-D buildup procedure to automatically generate 3-D surface 
models of the brain and lungs from computed tomography head and chest scans, respectively.  
Extensions to other tissue types such as heart and liver are demonstrated for contrast-enhanced 
imagery. 

Keywords: medical images, magnetic resonance imaging, computer-assisted tomography, clustering, 
DBSCAN 

1 Introduction 
Whole 3-D tissue segmentation is valuable for surgical planning and computer modeling and simulation.  
Specifically, the military and transportation sectors are interested in simulating the effects of various 
external trauma to hard and soft tissue [1].  Accurate models of organs from various individuals can 
improve the fidelity of these simulations. However, 3-D image segmentation can often involve a 
significant amount of tedious manual effort.  We strive to automate this process for the convenient 
extraction of 3-D tissue models from stacked sets of computed tomography (CT) scans.  While magnetic 
resonance imaging (MRI) may yield more detailed models, this modality is not suitable for individuals 
that may have metallic elements within their body, which could likely result from traumatic events. 

Density-based spatial clustering of applications with noise [2], or DBSCAN, has become a popular tool for 
image segmentation due to its ability to 1) detect segments of arbitrary shape 2) and not require a priori 
specification of the number of segments to extract.  These desirable features allow DBSCAN to be 
applied to a series of images with only determination of a single set of parameters.  In the case of 
medical imagery, DBSCAN has been mostly used in the context of tumor segmentation.  Remarkably 
versatile, DBSCAN can precisely segment lesions from images of skin [3] and tumors from a brain MRI 
[4].  Additionally, enhanced versions of DBSCAN properly extract lung nodules from CT scans [5]. 

Other algorithms have demonstrated promising results in medical image segmentation. The watershed 
algorithm [6] has been adapted to segmenting medical imagery.  The algorithm can detect lung lesions 
from CT scans [7], much like the application of DBSCAN in this similar problem [5].  However, unlike the 
watershed approach, DBSCAN is more sensitive to the gray values of individual segments, allowing more 
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elaborate segmentation.  Seeded region growth [8] is another popular method for medical image 
segmentation.  There even exist fully automated versions of this algorithm specifically for medical 
imaging [9].  However, the method of region growing is limited to the segmentation of one tissue at a 
time.  Since DBSCAN clusters the entire image, it is a more practical choice. 

The construction of accurate patient-specific 3-D tissue models from medical scans has the potential to 
revolutionize surgical planning [10]; procedures already exist to optimize the 3-D printing of these 
models [11].  Historically, 3-D tissue segmentation is conducted manually [12] using tools such as 
3DSlicer [13] and MIMICS 19.0 [14].  Recent advances in segmentation software have made semi-
automatic approaches to segmenting medical images more accessible.  However, there is a scarcity of 
fully automated procedures.  The segmentation in these fully automated approaches is conducted either 
statistically or by simple thresholding depending on the desired tissue. For example, the liver is large in 
comparison to other organs in the abdomen and has a homogeneous intensity in medical images, 
allowing it to be extracted by statistically analyzing regions in the scan [15]. Furthermore, bone typically 
has a much higher intensity in medical imagery than other anatomical structures and can therefore be 
extracted by thresholding out other soft tissue [16].  The actual construction of the models can be 
handled through interpolation between stacked slices [16] or through minimizing a cost function [17]. 

In this work, we revisit the possibility of automated 3-D tissue segmentation. General realization of this 
goal for all tissue types would require human-level skill in the interpretation of medical imagery. Instead, 
we present a cluster-based segmentation algorithm that utilizes DBSCAN and a novel stacking algorithm 
to construct 3-D models of tissue. 

2 Theory 

2.1 DBSCAN 
Unlike many other clustering algorithms, DBSCAN measures distance in terms of graph connectivity 
rather than a simple Euclidean metric, meaning that detected segments can deviate far from circularity.  
We briefly outline the method here.  Define the ε-neighborhood of a point p to be the set of points that 
are at most ε from p. We call p a core point if its ε-neighborhood contains at least m points.  A point q is 
ε-reachable from p if there exists a path of points p1 = p, p2, ..., pn = q such that pi is a core point and its 
ε-neighborhood contains pi+1 for all 1 ≤ i ≤ n-1.  A cluster is the maximal set of points ε-reachable from a 
core point p.  Points that are not reachable from any core point are labeled as noise. 

2.2 Image Segmentation via DBSCAN 
Ye et al. [18] was one of the first groups to show that clustering algorithms, especially DBSCAN, can be 
used to segment images.  Consider that each pixel pi of a CT scan image has coordinates (xi, yi) and a 
gray value ci.  Given that we desire to cluster pixels by both spatial proximity and value, we treat each 
pixel as a 3-dimensional point, where the value becomes the third coordinate, ranging from 0 (black) to 
255 (white). In DBSCAN terminology, a pixel, pj, with coordinates (xj,yj) and value cj, is ε-reachable from 
pi if   

, 
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where the arbitrary scale factor α acknowledges that the dimensional units of location and value are 
incommensurate.  For this work, we set α to 1, because the height and width of typical CT scans are 
within an order of magnitude of the value range (256). 

2.3 3-D Voxel Segmentation 
Typically, 3-D tissue models can be derived by stacking 2-D medical scans [16].  For this work, we 
developed an algorithm to merge segments from 2-D DBSCAN segmentations resulting in multiple 3-D 
voxel segments, which are then converted into surfaces.  The procedure begins with identifying unique 
segments Sa,1 (where a is the segment index) in the top scan in a given direction (e.g., axial).  The second 
scan is then compared with the first, where each segment Sb,2 is relabeled to account for matches with 
the first scan.  When a segment Sb,2 shares some of the same pixel locations with Sa,1, and has at least N 
corresponding pixel values that no more than τ apart in gray value, then that segment is relabeled to 
index of the segment from the first scan.  If there is more than one common segment from the first scan 
for a given Sb,2, the one with the most pixels in common "wins." If a segment Sb,2 has no first scan 
counterparts, it is given a new index, incremented from all previous unique labels.  This procedure is 
repeated for all scans, sequentially looping through adjacent scans. Then, the process is repeated 
starting backwards from the bottom scan, to merge segments that started off as two or more fragments 
from the top but, at some point, should have merged into one complete segment.  With the series of 2-
D segments now having been given common labels, they are merged into an individual voxel array per 
each unique label, and each voxel array is converted to a surface using the marching cubes algorithm 
[19].   For now, the generated surfaces must be manually selected for the wanted tissue type, but a 
fairly simple heuristic is that the larger surfaces tend to be the desired outputs. 

3 Methods 

3.1 Databases 
Medical imagery, all in DICOM format, was downloaded from three separate databases.  The first two 
databases were obtained from the Cancer Imaging Archive [20].  The Head-Neck Cetuximab study 
documents patients with stage III and IV head and neck cancer before and after treatment with the 
epidermal growth factor receptor (EGFR) inhibitor Cetuximab [21].  From this repository, we obtained 
three full body series that were utilized for brain extraction.  The second database from this archive, 
named LungCT-Diagnosis, contained series of scans with a slice thickness between three to six 
millimeters that were taken for diagnosis prior to surgery [22].  These images were enhanced with a 
contrast medium, allowing the heart and liver to be segmented in addition to the lungs.  The final 
database was the result of a collaboration between the ELCAP and VIA research groups to create a 
dataset for detection software [23].  It consists of series of unenhanced chest CT scans possessing a slice 
thickness of 1.25 mm. Without the contrast medium, only the lungs were extracted from this last 
database.  We leave it as future work to determine the process to extract 3-D models of the heart and 
liver from unenhanced scans. 
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3.2 Procedure 
3.2.1 Preprocessing 

The DICOM files are first read into our program using VTK tools [24].   CT scans reflect the radiodensity 
of tissue measured in Hounsfield units (HU) [25].  Air and water at standard temperature and pressure 
have defined radiodensity values of -1000 and 0 HU respectively. A preliminary thresholding is applied 
to highlight certain desired tissue and therefore refine the segmentation process.  The image is then 
converted from HU to grayscale by simply scaling the data.  To remove extraneous noise while retaining 
edge integrity, two passes of bilateral filtering [26] are applied to the images. 

3.2.2 Segmentation 

Before clustering in bulk, we first establish the values for DBSCAN parameters to best extract different 
tissue types.  We define the minimum number of points needed in the declaration of a core point m to 
be some fraction f of the area of the ε-neighborhood ― that is, 

. 

The circular assumption of nearby points can be used since the pixels of an image are, by definition, 
densely packed on a square lattice.  With fractions f < 1, regions with sharp, non-circular edges can be 
detected.  Experimentation with ε, f, and thresholding values was conducted to determine sufficient 
values for each tissue type, as seen in Table 1. 

Table 1: The values of ε, the fraction of the area of the ε-neighborhood f, and the thresholding values in HU that 
were determined to be suitable for DBSCAN-based segmentation of each tissue type. 

Tissue Type ε f Min Max 

Brain 4 0.1 -50 200 

Lung 8 0.3 -800 -300 

Heart (contrasted) 4 0.2 -50 200 

Liver (contrasted) 6 0.4 -50 200 

 
3.2.3 3-D Construction 

The buildup portion of our algorithm requires two additional parameters when determining whether to 
merge two segments from different slices: the number N of corresponding pixel locations between two 
segments whose values must be no more than τ apart.  Through experimentation, we determined the 
values of N = 50 and τ = 20 produced a clean result with the high resolving power of smaller structures. 

3.3 Software 
All the algorithms for this work were written in Python, using various common add-on modules. Scikit-
image was used to process images and Scikit-learn was used to perform DBSCAN clustering [27].  Besides 
initial DICOM reading, the VTK toolkit [24] was also used to create the 3-D models.   The standard-
format triangulated-surface STL files were rendered in Paraview [28]; the inclusion of OSPray [29] 
enhanced surface display by adding ambient occlusion and shadows. 
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4 Results and Discussion 

4.1 The 2-D Case 
We experimented with different clustering algorithms that did not require the number of clusters to be 
specified as a parameter.  The watershed method simply outlines regions, impeding the reliance of the 
buildup algorithm on merging filled segments together; therefore, it was disregarded.  We also ruled out 
the region growing method because of its inability to simultaneously segment more than one region 
from the image.  Ultimately, we narrowed our search to DBSCAN and mean shift, an algorithm that 
computes clusters by finding modes of the underlying probability density function of the data [30]. 

 
Figure 1: The toy images (a) and the results of applying DBSCAN (b) with ε = 4 and f = 0.2 and mean shift (c). 

By constructing toy models that mimicked various features of the skull, such as a thin border between 
two similarly colored regions, we determined that DBSCAN would operate more effectively on medical 
images.  Notice that for every case in Figure 1, mean shift creates more clusters than necessary by 
segmenting large regions of homogeneous color, a disconcerting feature for a segmentation algorithm.  
On the other hand, DBSCAN accurately segments each image, even ignoring the abundance of noise 
present in image (a3). 
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Figure 2: A CT scan of a human skull (a) and chest cavity (c) and the resulting segmentation by DBSCAN (b) 
and (e) respectively, using the parameters from Table 1. The thresholded chest cavity (d) is included to 

emphasize the bronchial tubes that are masked in the original image. 

4.2 3-D Models 
4.2.1 Bone 

Segmenting bone from CT scans may be done trivially through simple thresholding as its values are 
typically higher than that of surrounding tissue.  However, utilizing the same parameters as the brain (ε 
= 4 and f = 0.1), our algorithm can provide a more precise segmentation of bone than that from 
thresholding.   

Thresholding is less effective for several reasons.  Foreign objects such as metals register very highly on 
the Hounsfield scale; therefore, they are captured by the thresholding, as evidenced by the inclusion of 
the bed frame in row (b) of Figure 3.  Additionally, various bone types yield different Hounsfield values. 
For example, the skull bones have a much higher value than that of the ribs.  Notice in row (b) of Figure 
3 that the skull is well-defined, but the clavicle, ribs, and sternum are severely lacking.  Although our 
algorithm separates the skeleton into three clusters in this case, it provides much more detail globally 
and does not include any extraneous materials, such as the metal bed frame. 
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Figure 3: The results of segmentation of the skeleton of patient 0013 of the Head-Neck Cetuximab study [21] 
by our algorithm (a) and thresholding (b) respectively. Our algorithm segmented the skeleton into three 

separate regions, reflected by the different colors. 

4.2.2 Brain 

Segmenting the brain yields some of the most promising and repeatable results from this algorithm, 
likely because the brain is surrounded by the skull, providing a clear separation from other soft tissue.  It 
is even possible to cluster the brain and spinal cord together, as evidenced by Figure 4. However, this 
feature does not appear in brain models segmented from full body scans.  The intricate creasing present 
on the back of the brain and the detailed cerebellum exemplify the power of this algorithm.  The folding 
pattern of the brain is unable to be detected both because of the loss of detail in the CT scans and the 
necessary application of bilateral filtering [24]. 

 

Figure 4: The segmented brain from patient 0013 from the Head-Neck Cetuximab study [21]. 
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The brain models appearing in Figure 5 are taken from full body scans.  The lack of attachment to the 
spinal cord is likely because the spinal cord is typically clustered with back muscles in lower torso scans 
or sometimes missed altogether.  While the parameters for the segmentation are more attuned to the 
brain segmented in Figure 4, the fact that detailed brain models can be extracted from other patients 
demonstrates the reproducibility of the algorithm. 

 

Figure 5: The segmented brains from patient 0001 (a) and 0009 (b) from the Head-Neck Cetuximab study 
[21]. 

4.2.3 Lungs 

The lungs stand out in stark contrast with the rest of the soft tissue in the body because of the air 
contained within them.  There is a simple way to segment the lungs by extracting their imprint; 
however, this method is impractical, as it ignores the bronchial tubes.  The ideal lung segmentation 
should include some details of the bronchial tubes and a clear majority of the lung tissue.   

 

Figure 6: Segmentation results of the lungs of patient R0006 of the LungsCT-Diagonsis study [22]. 

Our protocol can not only depict the shape of the outer lung but discern a great amount of detail from 
the bronchial tubes as well, as illustrated by Figure 6.  This trend seems to be reproducible as well.  
When applied to all fifty lungs in the ELCAP-VIA database, our algorithm performed quite well by 
accurately segmenting most of the lungs; this data is included in the supplementary materials. 
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4.2.4 Other Tissue 

Our protocol has shown promising results for extracting other tissue types.  It could segment the heart 
and liver in scans enhanced with contrast medium as seen in Figs. 7 and 8.  However, the algorithm 
failed when the same parameters were applied to uncontrasted scans.  In the uncontrasted case, the 
gray values of the heart closely resemble those of the chest muscles; similarly, it is difficult to discern 
the liver from the surrounding abdominal tissue. 

 

Figure 7: Segmentation results of a contrasted heart of patient R0006 of the LungsCT-Diagonsis study [22]. 

The segmentation displays a detailed contouring of the aorta and pulmonary artery. Even the superior 
vena cava is intricately defined.  However, apparent gaps exist on the body of the heart and no chamber 
information can be discerned when the surface is made partially transparent.     

 

Figure 8: Segmentation results of a contrasted liver of patient R0006 of the LungsCT-Diagonsis study [22]. 

Our approach is able to properly capture some extent of the hepatic ducts, although it was unable to 
detect the ligament that splits the liver. 

Segmenting muscle tissue has proven to be particularly challenging.  The segments are typically in many 
pieces and lacking large chunks of tissue.  One likely explanation is the variability of muscle shape 
throughout the body is not conducive for a global set of parameters.  Additionally, muscle tissue is very 
similar in appearance to other soft tissue in the body which could disrupt segmentation. 
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4.3 Limitations 
Although our procedure provides a convenient and efficient method for 3-D segmentation, it is by no 
means a perfect solution to the problem.  Certain unavoidable phenomenon in the scans themselves 
could result in undesirable outcomes.  The CT scans often yield a circular working image; a black 
background fills the remainder of the square frame.  In off-center scans, the lungs may be clustered with 
this black background by DBSCAN, as in Figure 9.  However, this problem may be remedied by either 
cropping the image so that only the circular scan is processed or by setting the black background to 
white. 

 

Figure 9: Depicting the impact of off-center CT scans from patient W0008 in the ELCAP-VIA database [23]. The 
sample scan (a) and the results of the segmentation algorithm if run normally (b). By setting the outer region of 

the scan from black to white, the segmentation results were much more accurate (c). The colors in (b) and (c) 
represent the different segments detected. 

Another obstruction to clean segmentation is the presence of concentrated dyes or foreign objects with 
a high radiodensity such as metals.  This creates a bright spot that extends outwards in a gradient, 
disrupting our algorithm.  Since we view color as a third dimension, the gradient creates a ramp, 
possibly causing points from two separate regions to be ε-reachable.  In the case of patient W0014 
depicted in Figure 10, the lungs in this slice were merged with the background, creating a region that 
exceeded our threshold of pixel size for segments.  Therefore, the top quarter of the left lung was 
unable to be detected by our algorithm.  If we had decreased ε to incorporate this region, then the 
entire background would have been included in the segmentation, masking the lungs. 

 

Figure 10: The sample scan (a) and the results of the segmentation algorithm (b) that depict the impact of a 
bright spot from patient W0014 in the ELCAP-VIA database [23]. 
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Finally, widespread noise can be detrimental to the segmentation, as seen acutely for the detailed 
extraction of bronchial tubes.  While an abundance of noise seems to be almost negligible for the 
segmentation of soft tissue of homogeneous density like the brain and liver, it can profoundly impact 
the segmentation of lung tissue. 

 

 

 

 

 

 

 

 

 

Figure 11: The results of a noisy scan on patient W0007 in the ELCAP-VIA database [23]. The sample scan (a) and 
the results of the segmentation algorithm (b). 

Notice the white speckles present over the lung tissue in image (a) of Figure 11. DBSCAN will not cluster 
this noise with the lung tissue; therefore, very little detail from the bronchial tubes can be detected.  
Furthermore, intense noise can cause the inside of the lungs to appear spongy, which not only masks 
the inside of the lungs but could lead to a misdiagnosis as well, if these models were used in a clinical 
context. 

5 Conclusion 
Automated 3-D segmentation of various tissue types could impact surgical planning, medical training, 
diagnosing patients, and simulation from real tissue models.  Although a robust universal solution will 
likely require more sophisticated approaches, we have developed a simple-to-use protocol for fully 
automated 3-D segmentation of certain tissue types.  This algorithm does possess a few limitations, but 
its ability to accurately segment multiple organs demonstrates its versatility.  We present a method to 
extract the heart and liver from scans enhanced with contrast medium; extending the results to 
unenhanced scans is reserved for future work.  Furthermore, extending this work to MRI may yield more 
detailed results for certain tissue types where CT scans have limited resolving power. 
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ABSTRACT   

Fat suppression is commonly used  in Magnetic Resonance Imaging (MRI) to suppress the signal from 
adipose tissue or detect adipose tissue. Due to short relaxation times, fat has a high signal on magnetic 
resonance images (MRI). This high signal, easily recognized on MRI. The high signal due to fat may be 
responsible for artifacts such as ghosting and chemical shift. Lastly, a contrast enhancing tumor may be 
hidden by the surrounding fat. These problems have prompted development of fat suppression 
techniques. in MRI. Fat may be suppressed on the basis of its difference in resonance frequency with 
water by means of frequency selective pulses or phase contrast techniques, or on the basis of its short TI 
relaxation time by means of inversion recovery sequences. The aim of this paper is to study the Fat 
suppression technique using Inversion recovery Pulse sequence by calculating TInull parameter  for the 
pulse sequence. 

Keywords: Fat Suppression; Inversion Time; Spin Echo Sequence. 

1 Introduction  
In MRI fat suppression is essential for accurate diagnosis which may obscure underlying pathology. [1-6] 
The different chemical environments of fat and water cause fat to precess at a lower resonant frequency 
than water. At 4.7T fat precesses at about 700 Hz less than water.[7-8] This is usually expressed as -3.5 
parts per million of the main field strength.  [8-9] 

A magnetic field gradient allows the resonant frequency of an object to be mapped to its position along 
the gradient direction [10-12]. Therefore differences in resonant frequency result in differences in 
position. This results in fat being shifted relative to water in an image and is called the chemical shift 
artefact δ.[13-15] This is described in terms of frequency as follows 

    δ = ( Δf/ fo ) 106                                                        (1) 

where Δf= change in frequency (Hz) and  fo  =  Centre frequency (Hz). In images this shift is characterised 
by a dark edge between the fat and water [1,8 and 13].  

In situations where the chemical shift artefact is present the fat signal can obscure the water signal from 
underlying tissue. Here the aim was to find the appropriate value of the inversion time (TI), for use in 
the modified spin echo sequence, which would suppress the contribution from the fat.[13-15] 
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Inversion recovery pulse sequence:  Inversion recovery (IR) is a conventional spin echo (SE) sequence 
preceded by a 180o inverting pulse. In other words, if a SE sequence is denoted by (90o – 180o-echo), the 
IR sequence can be written as 180o- (90o-1800 – echo).[1-8] 

 

Figure 1. Inversion Recovery (IR) pulse sequence. 

The time between the 180o inverting pulse and the 90o pulse is called the inversion time (TI). The 
repetition  time (TR) and echo time (TE) are defined as they are for spin echo.[1-8] 

  

Figure 2 (a) Contrast of Fat(Tissue1) and Water (Tissue2)tissues   (b) TI for fat suppression 

2 Method 

2.1 MRI System:  
The Preclinical 4.7 Tesla micro MRI system(Surrey Medical Imaging Systems, UK) located at Biomedical 
physics department of University Aberdeen was  used for our research project. The system consisted of: 
Magnex 4.7 Tesla superconducting magnet;  MR Solutions console and pulse programmer; Magnex 
shielded gradient coils with Techron drivers capable of producing field gradients of 90mT/m with rise 
times of 200 µs  and Morris Instruments birdcage transmit/receive coil, and other RF coils of in-house 
design. 
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Figure 3. The Preclinical 4.7 Tesla micro MRI system with console at University of Aberdeen. 

2.2 Sample 
A set of 7 tubes containing either water or vegetable oil were imaged together. In order to reduce the 
relaxation time the water had been doped with copper sulphate. Without fat suppression images were 
made using the standard spin echo sequence. Two images were obtained in this way – one with an 
image bandwidth of 25 kHz and the other with 12.5 kHz. The other parameters associated with these 
images are as follows:  Field – of view = 100mm, Slice thickness = 5mm, Echo time (TE) = 40ms and the 
time between 90° pulses (TR) = 1000ms. 

To achieve fat suppression it was necessary to employ an inversion recovery pulse sequence. This pulse 
sequence includes a 180° pulse to invert the spins onto the negative z– axis. Following this the 
magnetisation vector slowly returns up the z– axis towards equilibrium. This is due to spin – lattice (T1) 
relaxation. When a 90° pulse is applied before equilibrium is reached the magnetisation is transferred 
from the z – axis to the x-y plane. Spin – spin (T2) relaxation results in the free induction signal (FIS).  

The time between the 180° and 90° pulses is the inversion time (TI). If TI coincides with the time at 
which the longitudinal magnetisation Mz of the fat is zero then there is no magnetisation from fat to be 
transferred to the x – y plane. Therefore there is zero contribution of the fat spins to the FIS. This value 
of TI is referred to as TINULL and its relationship to T1 is given below. As the fat and water have different 
values of T1 the water will still contribute to the FIS. [1, 2, 3] 

    Mz = Mo(1-2exp(-TI/T1)) = 0                                                                    (2) 

 ∴TINULL = 0.693T1(water/fat)                                                            (3) 

To obtain an image in which the signals from the tubes of fat are suppressed this value of TINULL for fat 
was used in a modified spin echo pulse sequence given below. 

 [180° - TI - 90° - TE/2 - 180° - TE/2 - signal - TR -]n                                           (4) 

This is the spin echo pulse sequence with an additional inversion pulse prior to the start of the spin echo 
sequence. Here n = 256. 

The main field was generated by a 4.7T superconducting solenoid. The RF coil’s impedance at resonance 
was matched to the standard 50Ω output/input impedance of RF power amplifiers/preamplifiers to 
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ensure efficient transfer from the coil. Shimming was carried out to correct for inhomogeneities in the 
magnetic field.  

3 Results and Discussion 

3.1 Without Fat Suppression 
The images obtained using the spin echo pulse sequence (without fat suppression) were reconstructed 

using a contrast factor of 0.05 and are shown below.  

 

 Figure 4.  Spin echo image obtained using a bandwidth of 25 kHz 

 

Figure 5.  Spin echo image obtained using a bandwidth of 12.5 kHz 

At higher field strengths (>0.5T) there is known to be a significant shift in fat relative to water . By 
comparing the images obtained at 25 and 12.5 kHz it was therefore concluded that the bright circles 
correspond to water and the dark circles to fat. The images show that in addition to being shifted the 
dark circles are slightly distorted. Also there is a faint circle in figure 5 in the same position as the fat 
peak in figure 4. This corresponds to the fat also containing some water. The observed shifts of the fat in 
figure 5 are quantified in the following section. 

(1.1) Chemical shift artefact 

The shift of the fat peak in figure 5 relative to its position in the higher frequency image was found by 
measuring the distance from the left hand edge of the faint water circle still present in figure 5(position 
x1) to the left hand edge of the shifted fat circle (position x2) (see figure 6).  
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Figure 6.  Diagram showing the positions on the fat circles of figure 5 used to calculate the shift of the fat in 
the 12.5 kHz image relative to its position in the 25 kHz image. 

The values used to measure the shift of the 4 fat samples in figure 5 are as follows 

Table 1.  Values of positions on the fat circles in figure 5 used to calculate the shift (∆x) of fat relative to water in 
millimetres (mm).  

x1(mm) x2(mm) ∆x (mm) 

-24.6 -30.9 -6.3 

-6.3 -12.1 -5.8 

-7.8 -1.6 -6.2 

-1.6 -7.8 -6.2 

 

In figure 5 the bandwidth is 12.5 kHz and the centre frequency (fo) is 199.9 MHz. Since the field of view is 
100mm × 100mm, 1mm corresponds to 125 Hz. This allows the shift in millimetres (∆x) to be converted 
to a shift in frequency (∆f).  Using these values and the centre frequency (fo = 199.1MHz) the chemical 
shift (δ) can be calculated according to equation 1. These values are given in Table 2 and are close to the 
expected shift of fat relative to water (-3.5ppm) . 

Table 2.  chemical shift values δ corresponding to the fat samples in figure 5 calculated according to equation 1 
using change in frequency ∆f. 

∆x(mm) ∆f(Hz) δ(ppm) 

-6.3 -787.5 -3.94 

-5.8 -725 -3.64 

-6.2 -775 -3.89 

-6.2 -775 -3.89 

(1.2) TINULL and T1 

Using the inversion recovery pulse sequence the TINULL value was estimated by suppressing the fat peak 
of the Free Induction Signal (FIS).  By trial and error this was found to be 140ms. From this T1 was 
calculated according to equation 3 and was found to be 201.6ms. 

3.2 With Fat Suppression 
The image below was obtained by including the estimated value of TINULL for fat (140ms) in the modified 
spin echo pulse sequence (see theory section). It was reconstructed using a contrast factor of 0.2. 

  x2   x1 
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Figure 7.  Fat suppression achieved using the modified spin echo sequence with TINULL and a bandwidth of 25 
kHz. The yellow circle represents the approximate region of the fat sample in figure 4.  

3.3 Quantifying Fat suppression 
3.3.1   Visual inspection 

That only the brighter circles remain indicates that fat suppression has been successful. However the 
circles corresponding to the water samples look darker than in previous images. The line across the top 
left hand side water sample is an artefact caused by the imager.  

3.3.2  Fat to Water Ratio 

To formally quantify fat suppression it is necessary to compare the fat to water signal intensity with 
(figure 7) and without (figure 4) fat suppression. For this comparison the water sample at the bottom of 
figures 4 and 7  was used. The fat sample at the top of the figure 4 and the region defined by the yellow 
circle at the top of figure 7were also used. Taking the different scaling of the two images into account 
the mean pixel intensities of the regions of fat and water described above are given in the table below.  

Table 3.  A comparison of the mean pixel intensities of regions of fat and water in figures 4 and 7 (i.e. without 
and with fat suppression respectively). 

Regions Mean pixel intensity 

Water – figure1 
(fat unsuppressed) 

19544 

Fat – figure1 
(fat unsuppressed) 

9008 

Water – figure 4 
(Fat suppressed) 

4648 

Fat – figure 4 
(Fat suppressed) 

306 

From this table the (fat/water) ratio for the unsuppressed image (figure 4) was found to be 0.46 and 
that for the suppressed image (figure 7) was found to be 0.07.  

The unsuppressed to suppressed fat ratio was also calculated from the above values and was found to 
be ~30. The corresponding ratio for water in the different images was found to be ~ 4. Therefore fat 
suppression is ~ 7 times higher than water suppression between the two images. This shows that there 
has been considerable suppression of the fat using TINULL = 140ms in the modified spin echo pulse 
sequence.  
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4 Conclusion 
Two images were obtained using the standard pulse echo sequence with bandwidths of 25 kHz and 12.5 
kHz. As the dark circles were observed to shift relative to water for the lower frequency image they 
were identified as corresponding to the fat samples. From this image the shifts for the four fat samples 
were calculated as -3.94, -3.63, -3.89 and -3.89 ppm. These values are all within 0.44ppm of the 
expected shift for this field strength. 

By minimizing the contribution of the fat samples to the FIS, TINULL was found to be 140ms. This 
corresponds to a T1 value of 201.6ms. This T1 value is about 5 times shorter than TR and is about 5 times 
longer than TE. 

Fat suppression was then attempted using the above value of TINULL. This was quantified by calculating 
the fat/water signal of the unsuppressed and suppressed images. These were found to be 0.46 and 0.07 
respectively. This indicates that considerable suppression of the fat signals had been achieved. However 
some suppression of the water has also taken place. Selection of a fat suppression technique should 
depend on the purpose of the fat suppression(contrast enhancement vs tissue characterization) and the 
amount of fat in the tissue being studied. 
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ABSTRACT 

Myocardial contraction affects the cardiovascular pumping system, and helps in the early phase to 
detect abnormalities of wall motion noninvasively. In this research, we designed a program to 
characterize regional abnormalities because scar tissue is very difficult to identify in normal cardiac CT 
images. We created 10 frames of a 3D heart model that contains the long axis as reference for 
predicting the left ventricular wall motion. We tested our 4D cardiac model with scar tissue using non 
invasive cardiac CT images. Here, four subjects (patients) were involved in this study. Subject 1 and 4 are 
matching the low motion of surgical area with scar tissue area. Subject 2 found fibrous tissue regions 
(about 40%), compared with the 2SD (Standard Deviation) region. The fibrotic area is completely 
overlapped with a low-motion region which indicates the fibrotic area has a significant correlation with 
the low wall motion region. This research evaluates low wall motion of the left ventricle and detection 
of fibrosis regions. 

Keywords: Left ventricular remodeling; myocardial wall motion; Cardiac imaging; Fibrotic tissue; 
Noninvasive cardiac evaluation;  

5 Introduction 
Cardiac disease has become a very challenging clinical problem like regional myocardial injury. It is one 
of the goals of cardiac imaging methods to measure the regional function of the left ventricle (LV). There 
are many existing techniques to precise and reliable quantitative regional LV function measurements. 
Most of the standard methods depend on 2D image sequence data [1, 2, 3, 4, 5, 6].Most of the 
techniques have been used end-diastolic(ED) and end systolic (ES) image frames. While the LV expansion 
and LV thickening from region to region is indicative of ischemia [2, 4, 6]. Song and Leahy have 
performed the dense-field optical flow approach to include fluid flow models using 3D datasets [7]. The 
Goldgof research group followed a shape matching idea which is similar to ours; though they primarily 
use Gaussian curvature employing conformal stretching models [8]. Pentland and Terzopoulos have 
been studying non-rigid motion models, using finite element analysis, which might be useful for cardiac 
analysis. The Ayache group unified these two approaches to segment and track the object 
simultaneously [9]. A recently proposed technique is the use of phase contrast MR images to decipher 
local velocity [10]. However, MR images take a long in acquisition and resolution is less than CT images. 
This can be integrated to estimate trajectories of individual points over time [11, 12]. Our new 
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developments could potentially help in curvature estimation, point-wise non-rigid motion tracking, 
initial quantitative measures of LV motion, thickening, and 3D visualization techniques. The 
experimental results from real image sequences of multi-phase and multi-slice cardio CT image will be 
presented, and future research directions will be discussed. 

2  Methods 
This is a Comparative study of low wall motion with scar tissue using 4D left ventricular cardiac images. 
The methodology has been grouped into various categories: 

Data Extraction 

We used Microsoft Windows 7, the 64-bit platform with Intel Celeron CPU G550, memory DDR3 4GB, 
Visual C ++ 6.0 MFC4.2 for software development and OpenGL library as a tool for the 3D model [13]. 
Images were obtained from the Philips computerized tomography (CT) instrument provided by the 
National Institute of Hospital of Yang-Ming University. This study and the informed consent procedure 
were approved by the Institutional Review Board of National Yang-Ming University Hospital. Each 
subject has 10 sets of timing frames, including a complete heartbeat cycle. 1 set of 3D cardiac image has 
400 slice of cardiac CT images. The scanned image size is 512 × 512 (pixels). 1 voxel is 0.165 mm3 

(0.429*0.429*0.9) where (x*y*z). We used this images to extract edges of endocardium and estimated 
the endocardium area of LV. In this way, we find the change of edges of wall motion.  

The program flow is as follows: 

• Read the image into the program, confirm the format for the DICOM (Digital Imaging and 
Communications in Medicine), the image is 512x512gray form stored in the program. 

• 3D reorganization and image information is obtained to construct the stereoscopic model of the 
thoracic area. Set the left ventricular central axis and resample the image [13]. 

• Perform a manual split using our program at the first slice only then use the regional growth law 
circle, draw the contour of the left ventricular endocardium. 

• The endocardial shape of the LV endocardium is magnified at a variable magnification, and the 
boundary of the second regional growth is made.  

• Repeated manual segmentation is performed to obtain epicardial information. 3D model LV 
endocardium and epicardium is established by a triangular mesh [14, 15]. 

Left Ventricular Edge Search 

We use manually cutting of LV images from base to apical from the entire data set, selected one image 
from the dataset and one seeded point to start this process. We obtained the geometrical center that 
connects each slice on long axis, applied regression calculation to find the line as a reference axis for LV 
[16, 17]. 

Manually Divide the left Ventricle 

In this section, we performed re-sampling of the images to find the short axis, separated LV from aorta 
(Fig 1).  
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Figure 1.Manually separated line between left ventricle and the aorta. 

Regional Growth Circle Selected Endocardium 

In this study, the left ventricular endocardial circle is used for the regional growth of the image which is 
close to the edge of the image. The regional growth of the operation is needed to set up the initial seed 
point. The initial point of the first slice will be considered as the reference point of the second slice, the 
second reference point will be set as the seeded region for other layers simultaneously (Fig 2) [16, 17]. It 
is necessary to confirm that the seeded spots of each layer are in the endometrial region, if not, we 
need to manually correct the seed points. 

 
Figure 2.Seeded Point Star from the First Layer and The Last Layer. 

Simulation Study 

The simulation model is proposed by Yang Bochuan and Ma Minghui. We obtained LV endocardium and 
the outer membrane Lattice model at different time of the long axis, calculated the diastolic and systolic 
period of the radius between the rates of change. After that we obtained the number of myocardial 
changes at each time. These steps are to obtain the simulated left ventricular at each time. This 
stereoscopic model is to simulate the changes of the LV in the cardiac cycle and the different values of 
myocardial changes in each block [18]. 
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Triangular Mesh 

We use triangular mesh for LV endometrial and adventitial information 3D. The number of samples for 
the study of 31 layers of each layer of 30 points a total of 930 points, which defines 1 to 10 layers for the 
base, 11 to 20 layers is the top layer, the 21-30 layers is the middle layer, and the 31st floor is the 
reference layer. The sampling method divides the total number of the left ventricles by 31 layers, and 
stores the coordinate points (X, Y, Z). The simulation is to use these 930 points to do the simulation 
movement. We calculate the momentum information of the heart when the low amount of movement 
occurs [15, 19]. 

Simulated Model End of Diastolic Phase 

LV contracts at the centre axis. The endometrial and adventitial information goes the left ventricular 
central axis to establish a triangular mesh model (Fig 3), which shows the gap between outer membrane 
model and the endometrial model.10 frame of the triangular mesh is done. In the endometrial 
triangular mesh model found with the degree of myocardial changes in different levels of red, yellow, 
green, light blue and dark blue are five colors (Fig.4), and will record the picture in the dark blue block 
coordinates. 

  

Figure.3 Left Ventricular Triangular Mesh 
Simulated Model that represents green color for outer 

membrane model, red for the endometrial model. 

Figure.4 Simulation model of left ventricular 
motion analysis. 

Fibrosis Area Assessment Interface  

This study explores the relationship between regional and motion. Hiroaki and other scholars performed 
the method using patient's delayed-enhancement images that determined the area of fibrotic tissue. 
This interface exhibit the calculation within the region of the HU (Hounsfield unit) average or press the 
single click in the block on the right mouse button, point to the center of the circle to 10 points for the 
radius of the circle. It automatically calculates the circle within the HU average and pink color display in 
the circular area (Fig.5). We get the region of interest HU value which shows region of fibrosis. This 
experiment performed to find the fibrosis area [20, 21]. 
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Figure.5 Fibrous area assessment interface (Pink circle area is the HU value of the manual 

selection area). 
 

3  Results 

Motion Model Analysis Interface 

We determined 10 lattice grid models in the DICOM 0 timing to reconstruct 3D heart volume and 
executed the program. We get a 4D model of LV motion. This display interface allows the user to 
observe the three-dimensional model of the inner portion of the left ventricle (Fig 6). The red color 
model represents a 3D model of the inner membrane, whereas the green color model represents the 
three-dimensional model of the outer membrane. This simulation system exhibits the LV outer 
membrane state of motion (Fig.7) which provides better understanding of the movement of the 
myocardium in the LV. This method is used dynamically to increase the number of left ventricle models 
in a linear interpolation method. 

 
Figure.6 Analog interfaces (The red color model represents inner membrane of 3D, green color model 

represents outer membrane of 3D). 
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Figure.7 Dynamic interface diagram. 

left Ventricular Low Motion Region Assessment  

Different color areas represent the difference between the mean left ventricular displacements. The 
blue is the relative displacement of 2 mm or less, the light blue is the displacement 2 ~ 3 mm, green is 
the displacement of 3 ~ 4 mm, yellow is the displacement of 4 ~ 5mm, red is the displacement of more 
than 5mm, and low-motion area is defined as the average amount of difference between the value of 
less than 2mm area. This study re-sampled after the left ventricular model 1 to 10 layers defined as the 
base layer, 11 to 20 layers is defined as the middle layer, 21 to 30 layers defined as the top layer. The 
method takes 30 points of sampling points counterclockwise (Fig. 8) (Fig. 9) (Table. 1). 

 
Figure.8 Re-sampling the sampling point. 

 
Timing series 0                Timing series 1. 

C O P Y R I G H T ©  S O C I E T Y  F O R  S C I E N C E  A N D  E D U C A T I O N  U N I T E D  K I N G D O M  3 4  
 



Chien-Yi Lee, Yashbir Singh,Michael Friebe, Wei-Chih Hu; Comparative Study of Left Ventricular Low Wall Motion with Scar Tissue Using 
4D Left Ventricular Cardiac Images. Journal of Biomedical Engineering and Medical Imaging, Volume 5, No 2, April (2018), pp 29-39 
 

 
Timing series 2               Timing series 3. 

 
Timing series 4                Timing series 5. 

  
Timing series 6               Timing series 7. 

 
  Timing series 8                Timing series 9. 

Figure.9 Myocardial changes in the model of subject 1 at every time  series. 
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Table.1 Analysis result 

Patients 
 Generation layer Segment group location Point shift 

 Position evaluation 

Subject1 

8 Segment 23, Degree 276 1.712mm 

Middle layer 
Posterior side 

 

Segments 24,Degree 288  1.784mm 

9 

Segments 23, Degree 276 1.672mm 
Segments 24, 288 degree 1.559mm 
Segments 25, 300 degree 1.588mm 
Segments 26, 312 degree 1.576mm 

10 
Segments 23, 276 degree 1.695mm 
Segments 24, 288 degree 1.701mm 
 Segments 25, 300 degree 1.543mm 

11 Segments 24, 288 degree 1.728mm 
 

We observed the low-motion region in the LV (Table .2) and defined 1 to 15 points for the front side 
(inferior), 16 to 30 points for the back (inferior), each interval is 12 degrees sampling points. In addition, 
the movement model analysis interface calculated with low sequence (Table.3). 

Table. 2 Location of scar tissue in the patients after surgery. 

Number of patients Number of layers area 
Subject1 Middle layer Posterior side 
Subject2 Middle layer Anterior side, posterior side 
Subject3 Lower Layer Posterior  side 

Subject4 Lower Layer Anterior side 
 

Table.3 Detection of the fibrotic tissue location. 

No. of Patients HU (Avg)  (Std Devi) Greater than 2SD layers 
 Area 

Subject1 60.2 8.4 266~274( middle layer) Posterior side 
Subject2 58.7 7.9 271~283(Middle layer) Anterior side 
Subject3 71.3 12.1 No no 

Subject4 64.5 9.0 302~309(base layer)  Anterior  side 
 

Determination of left Ventricular Fibrosis Area 

We performed patient's surgery of LV site. Using meglumine diatrizoate, we developed enhancement 
image criteria using Zeinab et al, found the information of the single image with a fibrotic area, scanned 
the 10-slice and 20-slice myocardial wall area to ensure that the post-operative area in the left ventricle 
pattern which is defined by the spinal cord for the posterior Side. It contains the lower wall of the hypo-
pharynx, inferior wall, back wall and front of the spinal cord that contains septal, anterior wall and other 
blocks. We scan whole heart during the systolic phase and find the area which has low changing radius 
to match the scar area as low wall motion area. The changing radius is 7.76% which is less than the 
average changing radius that exhibits low wall motion of LV. The assessment of impaired myocardial 
function is compared to the central axis angle. Low-motion region is only related to the change in the 
radius. Therefore, this study shows that the maximum low-motion area, affect the central axis angle 
changes. The low-volume region is the fibrotic area; results are found (Table. 4). 
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Table 4. Descriptive result of Subject 1. 

Individual 

The 
layer of 
surgical 
position 

Surgical 
area 

The slice of 
left 

ventricle 

HU value is greater 
than the average 2SD 

area(HU value>77) 

Resample 
the model 

layer 

Point group 
location 

Point group 
displacement 

Subject1 Middle 
layer Posterior 

266 slice No 

Eleventh 

The 23rd 
point(Degree 

276) 
1.712mm 

267 slice No 

The 24th 
point(Degree 

288) 
1.784mm 

268 slice 

Degree 264(HU 
value85) 

Degree 276(HU 
value77) 

269 slice 

Degree 264(HU 
value86) 

Degree 276(HU 
value92) Degree 
336(HU value79) 
Degree 348(HU 

value77) 

270 slice 

Degree 264(HU 
value89) 

Degree 276(HU 
value92) Degree 288 

(HU value83) 
Degree 312(HU 

value79) 
Degree 336(HU 

value79) 

271 slice 

Degree 252(HU 
value80) 

Degree 264(HU 
value90) Degree 
276(HU value83) 
Degree 348 (HU 

value78) 
Degree 324(HU 

value85) 

Tenth 

The 23rd 
point(Degree 

276) 
1.672mm 

272 slice 

Degree 252(HU 
value79) 

Degree 264(HU 
value84) Degree 
336(HU value79) 
Degree 348(HU 

value82) 

The 24rd 
point(Degree 

288) 
1.559mm 

273 slice 

Degree 264(HU 
value84) 

Degree 276(HU 
value79) Degree 
348(HU value81) 

The 25rd 
point(Degree 

300) 
1.588mm 

274 slice 

Degree 264(HU 
value80) 

Degree 276(HU 
value77) Degree 
348(HU value77) 

The 26rd 
point(Degree 

312) 
1.576mm 

275 slice No 

276 slice No Ninth The 23rd 
point(Degree 1.695mm 
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276) 

277 slice No 
The 24rd 

point(Degree 
288) 

1.701mm 

278 slice No The 25rd 
point(Degree 

300) 
1.543mm 279 slice No 

280 slice No 
281 slice No 

Eighth 
The 24th 

point(Degree 
288) 

1.728mm 
282 slice No 
283 slice No 
284 slice No 
285 slice No 

We have four Subjects (Patients), Subject 1and 4 are matching the low motion of surgical area with scar 
tissue area. Patient 2 has five districts surgical area, the presence of fibrous tissue is only two regions 
(about 40%), compared with the 2SD (Standard Deviation) region. The region is higher than the average 
of 1.6 to 1.8 times the SD value produced. Compared with larger than 2SD region, a slow-motion region 
found, the fibrotic area completely overlapped with a low-motion region which indicates the fibrotic 
area. It has a significant correlation with the low-motion region. This study is also found that the fibrosis 
area is significantly lower than low exercise area. Injured area involved in the movement of adjacent 
muscles which led to low mobility area than the fibrosis area to the wide. Subject 3 is no fibrotic tissue 
in this region, as long as the myocardial injury to a certain extent will lead to low motion incidence of 
the region, but the system can still find the low motion region and position. Only the low-motion area is 
the medium-risk group in the non-scar area. This study is compared with the fibrotic area method which 
is proposed by the previous research, our study is to detect the low motion area. It is possible to predict 
the location of the fibrosis region by irradiating the delayed-enhancement image. The tool can further 
identify the area of low motion activity without fibrosis, which is performed by the physician for early 
monitoring, and tracking can provide effective help. 

4  Conclusion 
This research evaluated low wall motion of the left ventricle of the four patients after surgery, 
myocardial changes analysis and fibrosis of the region confirms the feasibility of the myocardial 
movement. This method is sensitive to detect the myocardium dysfunction. We can apply this method 
to find different types of ventricle disease of the cardiomyopathy. This study is included the assessment 
of myocardial infarction, Cardiac remodeling and assessing the role of fibrotic tissue in the heart. Further 
research will involve the integration of the heart motion, validating geometrical landmarks and 
integration of the motion matching. 
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ABSTRACT   

The parallel processing of verbal elements like textual labels, annotations etc. with non-verbal i.e. visual 
elements, provides maximum integration of human mind. Textual labels and annotations aid in 
understanding medical data visualization. But it is a very challenging task to generate hand-made like 
illustration labels in an automated system. The paper presents a noble approach for dynamic external 
labeling of segmented 2D computer tomography (CT) slices. Various efficient algorithms are approached 
to solve labeling problems in modular form. The system emphasizes on the readability and clarity of 
labels while generating dynamic group labels in real time for 2D slices using external labeling layout. 

Keywords: External labels, medical data visualization. 

1 Introduction  
Images are considered as a very powerful medium for communicating ideas. However to make an image 
more meaningful and informative, textual descriptions such as labels, legends, captions etc. have 
become essential parts of images, especially in educational and scientific documents. Labels are largely 
classified as internal and external labels. Internal labels are placed within the objects of a picture. On the 
other hand, external labels are placed into the empty spaces, outside of the objects. Both internal and 
external labels are used to describe or distinguish different graphical elements. In case of external 
labels, lines are drawn between labels and their corresponding referenced objects. As aesthetic is a very 
important factor, illustrators have to be very careful to maintain the visual balance while labeling a 
handmade illustration. Automated and interactive labeling systems are still a challenge. Poor placement 
of labels may have a negative impact on understanding a visual system. Whether it is an interactive or 
automated system, the main goal of labeling an illustration is to employ any of the layout conventions 
that are used by human illustrators, so that labels can be read comfortably and visual balance of the 
image is preserved. 

For quantitative measurement, segmentation of computer tomography (CT) is needed by many image 
analysis procedures. Research are going on to produce CT segmented images [12, 13]. Different 
segmentation masks are used to distinguish background and different structures. In real life application, 
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doctors sometimes need a verbal description of the segmented structures. Also, medical students need 
textual contents along with the CT images for better understanding. Manual labeling would be a naïve 
way for this type of application as hundreds of labels might need to be generated on the fly during 
analyzing CT images slice by slice. So here, a dynamic label placement system is developed which can 
generate external textual labels for segmented CT images. The system finds good placements of labels 
while viewing 2D slices with the consideration of different labeling aspects. 

In section 2, some related works are reviewed. Section 3 states the system architecture while section 4 
describes the developed dynamic labeling system. Section 5 provides some results with the discussion. 
Finally, the paper concludes with some hints of future extension. 

2 Related Works 
Dynamic textual labeling for CT images is still largely unexplored. However, there are some interactive 
systems for 3D models that address some of the labeling problems. For example, Zoom Illustrator [15] 
uses dedicated part on the screen for text so that they do not overlap any image object. Also, Fish View 
Technique [8] is used to show more textual information without overlapping other labels.  Talking 
Shadows [4] and Illustrative Shadows [16] use object shadows for placing text information of the 
associated objects. But they hardly address any labeling layout problem. 

A Virtual Reality application, View Management [3] dynamically places labels for objects. It considers 
most of the labeling problems such as internal or external labeling layout, empty space management, 
minimization of label overlapping etc. However, as it uses bounding box technique to determine the 
area of an object, thin long diagonal objects may wrongly occlude other small objects. Map labeling is a 
well-studied field and many works are done for dynamic internal map labeling layout. However, it is 
found that global optimization (i.e. no overlapping of labels) is computationally N-P hard [6]. So, change 
of one label position effects the entire map labeling layout. 

Few good algorithms are developed for 3D dynamic labeling. They consider major labeling layout 
problems such as label layouts (flash or radial, internal or external), placement of external labels into 
empty space, minimization of line crossings, elimination of label overlapping etc. Floating Labels [10] 
uses some potential force fields to eliminate overlapping of labels. It also addresses frame coherency to 
minimize visual discontinuity. In [9], calmer parts of the animated 3D objects are determined where 
anchor points or internal labels can be put to achieve lesser flickers among frames. Ali et al. [1] 
employed different layout methods for external labeling of 3D illustrations. The system is greatly 
suitable for compact and convex 3D models with having enough empty spaces surrounding the object. 
These techniques can be adopted for 2D layered CT images with considerations. However, achieving all 
the aesthetic criteria of a labeling layout at the same time is very difficult as some criteria may conflict 
each other. Also most approaches trade-off between labeling quality and computational costs. 

Oeltze-Jafra and Preim surveyed several techniques of labeling in medical visualization [20].  They 
proposed a categorization of different labeling techniques and recommended guidelines for choosing a 
proper technique for a specific type of application area. They indicated that it is a hard task to achieve 
all requirements of labeling.  They also reported that among several techniques labeling slice views is a 
relatively less explored area.   
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In [21] Kang et al. proposed a force-directed labeling method for 3D street visualization that increases 
the visibility of street addresses in the map. However they addressed the problem of internal labeling 
whereas our method address the problem of internal labeling.  

3 System Architecture 
After reviewing related works and analyzing medical illustrations [17, 19] it is found that a good labeling 
system should consider the following aspects: 

Readability: Labels and lines should have good background contrast. Font size, text shadow, background 
and foreground color can be adjusted by the users as needed. 

Aestheticism: Placement of the labels should be such that there should not be any overlapped label. 
Also, line crossings should be eliminated or reduced. Anchor points should be at salient positions of the 
structures. 

Efficiency: Good, efficient algorithm should be used so that the system can be implemented for real-
time application. 

Grouping: Same structure may be seen in different places. Some criteria should be utilized to group 
them together and thus minimizes the number of labels. 

Slice Coherency: Sizes, locations of structures may vary within different slices. So it is likely to vary the 
position of labels also, which may generate the blinking effect. So measures should be taken to minimize 
this blinking effect. 

 

Figure 1: System Architecture 

 

The system architecture (Fig. 1) is designed to achieve the above mentioned global requirements. The 
input segmented image itself contains the identification text (labels) and other color-coded information 
for each object, while users can define various label properties such as text size, color, text-background 

C O P Y R I G H T ©  S O C I E T Y  F O R  S C I E N C E  A N D  E D U C A T I O N  U N I T E D  K I N G D O M  4 2  
 



Muhammad Masud Tarek, Bilkis Jamal Ferdosi; External Group Labeling of Objects in 2D Medical Images Using Spring-Mass Model. 
Journal of Biomedical Engineering and Medical Imaging, Volume 5, No 2, April (2018), pp 40-50 
 

color, and transparency etc. in the User Interface (UI) module. In the Image Processing modules, 
available empty spaces (i.e. background) are calculated where labels can be put. Acceptable anchor 
points for each object are also calculated here. A textual label is connected to an anchor point by a line 
to indicate the corresponding object. In the label layout modules, initial placement of each label is 
determined. Here, there are several other modules for eliminating label overlapping, grouping and 
eliminating intersection of connected line segments and thus final placements of all the labels of a slice 
are determined. The last module stabilizes anchor points to reduce visual discontinuity between two 
adjacent slices. 

4 The Dynamic Labeling System 
A modular approach is used to implement the dynamic labeling system. For the better contrast between 
image and textual labels, each label is enclosed within a rectangular box. The size of the box depends on 
the text length and font size of the label. Users are able to change rectangle background color on the fly 
(Fig. 2). For the aesthetic reason, these rectangle boxes are transparent, so that some parts of the 
graphical structures are visualized and thus minimizing visual clutter. Alpha Blending [14] is used for the 
transparency effect using the equation 1: 

 

(1) 

For each slice, the generalized algorithm is: 

1. Calculate background spaces which are available for putting labels 
2. Identify each object uniquely 
3. Calculate anchor point for each object 
4. Determine initial label placement 
5. Eliminate label overlapping by either 

a. moving overlapped labels up or down repetitively to a minimum distance, or 
b. using potential repulsive forces among labels and attractive forces between an anchor 

point and corresponding textual label of an object 
6. Group same objects under a single textual label if those objects are within a threshold distance 
7. Draw connection line from anchor points to their associated label 
8. Eliminate connected line intersections 
9. Stabilize anchor points of next slice if they are within a threshold value of current slice. 
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Figure 2: User Interface 

4.1 Uniquely Identifying an Object 
In a segmented CT slice, objects are color-coded uniquely but the same object (i.e. same color code) may 
appear in different places within a slice. For a successful labeling, each part has to be uniquely identified. 
Connected component labeling algorithm [5] may be used for that purpose. But if objects have many 
edges, a sheer amount of data in the equivalent table have to be managed which is extremely difficult. 
So here the system scans 8-neighbors of a pixel recursively to determine the area of an object. The 
algorithm is fast enough for a real-time system as a flag variable is used to avoid additional scanning of a 
pixel. 

4.2 Anchor Point Calculation 
The point of the object up to which the line from a textual label is drawn is known as an anchor point. As 
placement of a label depends upon anchor point position, a good calculation is much needed. For a fast 
output, any point of an object could be used as an anchor point. But it would not be an aesthetic choice. 
In [15], some criteria are discussed that should be taken into account during anchor point computation. 
For example, the point should be valid i.e. part of the corresponding structure. To avoid overlapping and 
visual clutter, anchor points should not cluster together and of course, calculations should be fast 
enough for an interactive system. Most importantly, it should be a salient point, i.e. at the visually most 
dominant part of the object. Skeletonization [11] is a good approach to find a salient point but 
computationally very expensive O(n2). To meet most of the criteria, the system uses the most inner 
point of an object as the anchor point using distance transform mapping [18] with computational cost 
O(n). To avoid real number calculation, Euclidean or city-block distance matrices are avoided. Instead, 
Pseudo-Euclidean method [2] is implemented which uses integer approximation. It would not give actual 
distance (which is not required for this system) but the most inner point of an object can be determined 
efficiently. 

4.3 Label Placement 
For simplicity, the system uses flash left-right labeling layout. So, a label will be placed either left or right 
side of an object. Initially, after sorting all the anchor points of a slice, the system would try to place 
labels from top to bottom one by one. If the anchor point is at the left side of the slice, the system 
would try to find enough empty space at the left side of the object for the label. If failed, it would place 
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on the other side. Initially, a label is placed at the same y-coordinate of the associated anchor point. If 
any two labels are overlapped, they would be moved up or down at a minimum distance. The value of 
the minimum distance can be chosen by the user. Other already placed labels would be rechecked 
repeatedly to ensure no overlapping is happened (Fig. 3a). 

The system can also use force-directed method for the placement of labels. Fruchterman and Reingold 
introduced a spring-embedding approach for graph drawing which considers two forces [7]. The 
attractive force attracts the connected vertices each other while the repulsive force causes all other 
vertices to repel each other.  The same approach can be used for the external labels. Here a label is 
attracted by associated anchor point, whereas, labels have repulsive forces to each other. To avoid the 
collapse of a label to its object, all the pixels of that object except anchor point have repulsive forces on 
the label. Also, labels get repulsion from image boundary walls so that they will always be within the 
image area. 

  
(a) (b) 

Figure 3: (a) Without force-directed method labels are put closer, (b) Force directed approach 
puts labels more uniformly 

To employ the graph drawing method, labels are considered as zero length points. The attractive force 
between an anchor point and associated label can be given by, 

Fa(x) = x2/k where x is the distance between the anchor point and the label and k is the tolerable 
distance between them. Typically the value of k is 30 to 50. Similarly, repulsion forces among labels can 
be calculated by, 

Fr(x) = - k2/x where x is the distance between two labels and k is the ideal distance between them. 

All forces are summed up to calculate the displacement for a label (Fig. 3b). However, a temperature t is 
used to control the displacement. At first, the temperature is given high (1.0) and a cooling function is 
used to cool it in each iteration.  The typical cooling rate is 0.95 to 0.90. During iteration minimum of 
temperature and normalized force value is used for a small displacement of the label. Typically, after 20 
to 30 iteration a satisfactory label placement can be achieved (Algorithm 1). 
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(a) (b) 
Figure 4: Grouping (a) without and (b) with considering the centroid of anchor points. 

4.4 Grouping 
In a CT slice, same object (or structure) may appear more than once. Sometimes it is desirable to group 
those objects under one label. This would make the output image more readable. However, it may not 
always produce a good result. Many objects under one label may cause visual clutter. So, for grouping of 
labels, we consider some criteria such as the number of maximal objects that can be grouped together, 
maximum distances among group objects etc. The real challenge is the good placement of label for a 
group of objects. One simple approach is to take the initial label position of the most upper object of the 
group. But it would not give a salient position. So the system uses more complex approach. Here, the 
centroid of the candidate anchor points is calculated. The initial label of the nearest anchor point of the 
centroid is served as the label of all group members. All other labels are deleted and connection lines 
are redrawn from the selected label to anchor points (Fig. 4). 

Algorithm 1: Force-directed method 

L = list of labels 
A = anchor points 
W = boundary points of the slice 
O = list of objects’ border points 
 
for iteration:=1 to max_iteration // typically, max_iteration=20 to 30 
 for each L[i] 
  TDisp[i]:=0 
         // a label attracts its referenced anchor point 
  Disp:=L[i]-A[i] 
  TDisp[i]:= TDisp[i]- sign(Disp)* AForce(abs(Dis)) 
 
  for each L[j]  
   if (i!=j) 
    // a label repulses other labels 
    Disp:=L[i]-L[j]  
    TDisp[i]:= TDisp[i]+ sign(Disp)* RForce(abs(Disp)) 

C O P Y R I G H T ©  S O C I E T Y  F O R  S C I E N C E  A N D  E D U C A T I O N  U N I T E D  K I N G D O M  4 6  
 



Muhammad Masud Tarek, Bilkis Jamal Ferdosi; External Group Labeling of Objects in 2D Medical Images Using Spring-Mass Model. 
Journal of Biomedical Engineering and Medical Imaging, Volume 5, No 2, April (2018), pp 40-50 
 

    // a label repulses non-referenced anchor points 
    Disp:=L[i]-A[j]  
    TDisp[i]:= TDisp[i]+ sign(Disp)* RForce(abs(Disp)) 
   end if 
  end for 
  // a label repulses slice-border points 
  for each W[j] 
   Disp:=L[i]-W[j]  
   TDisp[i]:= TDisp[i]+ sign(Disp)* RForce(abs(Disp)) 
     end for 
  // a label repulses its object’s border points 
  for each O[i] 
   Disp:=L[i]-O[i]  
   TDisp[i]:= TDisp[i]+ sign(Disp)* RForce(abs(Disp)) 
     end for 
  // calculate new label position with initially, Temperature=1 
  EffectiveDisp:= sign(TDisp[i]) * min(norm(TDisp), Temp) 
  L[i].pos:=L[i].pos + EffectiveDisp 
         Temp=cool(Temp) 
 end for 
end for 
 
function AForce(x){return  k2/x;} // k=ideal distance 
function RForce(x){return x2/k;}// k=tolerable distance 
function cool(temperature) {return temperature * coolingRate;} 

//initially temperature=1.0, typical coolingRate=0.95 

4.5 Eliminating Line Intersections 
Using elementary geometry knowledge, each pair of line segments are checked for any intersections. 
For non-group labels, if any intersection is found, label positions are swapped, thus eliminating line 
intersections. After swapping, corresponding segment is again re-checked with other lines. As a number 
of labels within a slice are not much (usually less than 30), so the above-mentioned method can be used 
in real time system without much difficulty. For grouped labels, if any intersection occurs, it would be 
more complex to solve. In that case, the object which is responsible for line intersection is left out from 
the group. 

4.6 Slice Coherency 
The system generates labels dynamically according to objects’ location, computed anchor points and 
available empty spaces. When users go through slices interactively, it is more desirable to have a 
minimal change of label locations.  The abrupt change of labels may generate flicker and users’ attention 
may be destructed. If users go through slices very quickly, as new anchor points are likely to generate in 
every slice due to change of object’s size and location. As a result, blinking effect may produce. To 
reduce this effect, anchor points should not be changed as long as possible. However, this may cause 
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non-salient anchor points for objects. The system remembers the anchor points of the previous slice. 
After computing new anchor points for current slice, it compares them with previous positions. If 
positions are not changes for a certain thresh-hold value, previous positions are used. Label positions 
are unlikely to change much for unchanged anchor points. As a result, labels do not jump much (Fig. 5). 

   
(a) (b) (c) 

Figure. 5: With no slice coherency, slice 29 (a) and slice 30 (b) have different label positions, while, with 
anchor point stabilization approach, slice 29 (a) and slice 30 (c) have almost similar label positions thus 

minimizes blinking effects. 

5 Results and Discussion 
The system is developed using MeVisLab, a medical data visualization tool based on QT framework and 
Open Inventor toolkits. The primary goal of the system is to generate external labels for CT slices which 
would help doctors and medical students to recognize different objects within the slices easily. So, for 
such system, perfect evolution should be empirical, i.e. users’ feedback. Unfortunately, as the system is 
still in developing phase, no real-world user feedback is available. From the numerical point of view, four 
segmented CT images were used to generate labels with total 154 slices (Table 1). Among 1074 objects, 
all were labeled successfully. Because of attractive forces among objects and anchor points, it is seen 
that labels overlapped with objects (2.14%) are slightly more than while no force-directed method is 
used (1.49%). Though, both figures are very low, if compare to a number of total objects. There is only 
0.1% line intersection which is a great result for readability and clarity. As there are usually less than 30 
objects per slice, current standard computers take less than 2 seconds to generate labels for a slice. 
Even force-directed method takes insignificant time. So, the system is very suitable for real-time 
application. 
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Table 1: Summary of experimental results 

No. of CT images = 4 
Total slices =154  
Total objects =1074  
Failure to label = 0 
With Non-grouping labeling 
 
No. of label overlap (no force)=12 
No. of line Intersect (no force)=02 
No. of label overlap (with force)=16 
No. of line Intersect (with force)=03 
With grouping labeling 
 
No. of line intersect=02 
No. of label overlap each other=0 
No. of label overlap with objects (no force) = 16 (1.49%) 
No. of label overlap with objects (with force) = 23 (2.14%) 

 
6 Future Work and Conclusion 

Generating textual labels dynamically for CT slices are very helpful for both doctors and medical 
students. As usual, there are always some scopes for future extensions of the work. The system 
currently only uses left-right flash layout. It can be extended for other labeling layouts like top-bottom, 
ring, radial etc. The system uses 2D texts for labeling. Using 3D texts in future more features like text 
zooming, rotating etc. can be added. Another good extension would be contextual grouping where 
objects with similar functionalities can be labeled together. Interactivity can be added so that users can 
choose which functional objects will be labeled. 
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