Stratification of the Type 2 Diabetes Mellitus Based on Heart Rate Variability Parameters in Elderly Women at Rest

Authors

  • Wollner Materko Universidade Federal do Amapá
  • Daianne Freires Fernandes Universidade Federal do Amapá
  • Francineide Pereira da Silva Pena Universidade Federal do Amapá

DOI:

https://doi.org/10.14738/jbemi.73.8369

Keywords:

Diabetes; Elderly; Heart rate variability; Cardiac autonomic neuropathy; Logistic regression

Abstract

Cardiac autonomic neuropathy in type 2 diabetes mellitus (T2DM) patients is frequent and associated with high cardiovascular mortality. The purpose of the present study was to stratify the T2DM using a logistic model based on parameters derived from heart rate variability (HRV). This study was designed as a cross-sectional study of consisted of thirty elderly women subjects 60 to 70 yrs of age with diagnosed with T2DM (N = 15) and healthy (N = 15). All subjects were instructed to lie in the supine position for 5 min at rest while breathing normally with a heart rate monitor Polar RS810 working at a sampling rate of 1000 Hz was used to record RR intervals (RRi). The HRV analysis in the time domain was performed to obtain the classical parameters pNN50, SDNN, RMSSD and MeanRRi and, subsequently, re-sampling procedure to bootstrapping based on 1000 samples. The model for predicting T2DM was obtained by backward stepwise multivariate logistic regression assuming as independent variable MeanRRi. This model presented 0.80 positive predictive value, 0.73 negative predictive value and 0.76 total accuracy. In conclusion, the use of the proposed MeanRRi parameter measured at rest seems to be able to stratify the T2DM in elderly women. The benefits of HRV monitoring the severity of T2DM should be potential as a reliable and non-invasive.

Author Biographies

Wollner Materko, Universidade Federal do Amapá

Wollner Materko1,2, Daianne Freires Fernandes1 & Francineide Pereira da Silva Pena2

1Universidade Federal do Amapá, Master Program in Health Sciences, Macapá, AP, Brazil; 2Universidade Federal do Amapá, Postgraduate in Multiprofessional Residency in Public Health, Macapá, AP, Brazil

[email protected]; https://wollnermaterko.webnode.com

Daianne Freires Fernandes, Universidade Federal do Amapá

Wollner Materko1,2, Daianne Freires Fernandes1 & Francineide Pereira da Silva Pena2

1Universidade Federal do Amapá, Master Program in Health Sciences, Macapá, AP, Brazil; 2Universidade Federal do Amapá, Postgraduate in Multiprofessional Residency in Public Health, Macapá, AP, Brazil

[email protected]; https://wollnermaterko.webnode.com

Francineide Pereira da Silva Pena, Universidade Federal do Amapá

Wollner Materko1,2, Daianne Freires Fernandes1 & Francineide Pereira da Silva Pena2

1Universidade Federal do Amapá, Master Program in Health Sciences, Macapá, AP, Brazil; 2Universidade Federal do Amapá, Postgraduate in Multiprofessional Residency in Public Health, Macapá, AP, Brazil

[email protected]; https://wollnermaterko.webnode.com

References

(1) Nigam Y, Knight J, Bhattacharya S, Bayer A. Physiological changes associated with aging and immobility. J Aging Res. 2010;2012:468469. doi: 10.1155/2012/468469.

(2) Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol. 2017; 155:96-119. doi: 10.1016/j.pneurobio.2015.09.012.

(3) Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, et al. Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev. 2016;30:25-48. doi: 10.1016/j.arr.2016.01.002.

(4) Pintana H, Lietzau G, Augestad IL, Chiazza F, Nyström T, Patrome C, et al. Obesity-induced type 2 diabetes impairs neurological recovery after stroke in correlation with decreased neurogenesis and persistent atrophy of parvalbumin-positive interneurons. Clin Sci (Lond). 2019;133(13):1367-1386. doi: 10.1042/CS20190180.

(5) International Diabetes Federation. IDF diabetes atlas. 6th Brussels: International Diabetes Federation, 2013.

(6) Piette JD, Kerr EA. The impact of comorbid chronic conditions on diabetes care. Diabetes care. 2006;29(3), 725-731. doi.org/10.2337/diacare.29.03.06.dc05-2078

(7) Jaacks LM, Siegel KR, Gujral UP, Narayan KMV. Type 2 diabetes: A 21st century epidemic. Best Pract Res Clin Endocrinol Metab. 2016;30: 331–343

(8) Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and Type 2 Diabetes: The American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33: e147–e167. doi.org/10.2337/dc10-9990

(9) Da Rocha Fernandes J, Ogurtsova K, Linnenkamp U, Guariguata L, Seuring T, Zhang P, et al. IDF Diabetes Atlas estimates of 2014 global health expenditures on diabetes. Diabetes Res Clin Pract. 2016;117:48–54. doi.org/10.1016/j.diabres.2016.04.016

(10) Rafeh R, Viveiros A, Oudit GY, El-Yarzi AF. (2020). Targeting perivascular and epicardial adipose tissue inflammation: therapeutic opportunities for cardiovascular disease. Clin Sci (Lond). 2020;134(7):827-851. doi: 10.1042/CS20190227.

(11) Bhaskar, S. Impact of obesity-induced type 2 diabetes on long-term outcomes following stroke. Clin Sci (Lond). 2019;133(14):1603-1607. doi: 10.1042/CS20190492.

(12) Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuiji H, Lloyd-Jones DM, et al. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol. 2000;86:309–312

(13) Albarado-Ibañez A, Arroyo-Carmona, RE, Sánchez-Hernández R, Wilson PF, Tsuiji H, Lloyd-Jones DM, et al. The Role of the Autonomic Nervous System on Cardiac Rhythm during the Evolution of Diabetes Mellitus Using Heart Rate Variability as a Biomarker. J Diabetes Res. 2019;2019:5157024. doi: 10.1155/2019/5157024.

(14) Arroyo-Carmona RE, López-Serrano AL, Albarado-Ibañez A, Mendoza-Lucero FMF, Medel-Cajica D, Lópesz-Mayirga RM, et al. Heart rate variability as early biomarker for the evaluation of diabetes mellitus progress. J Diabetes Res. 2016;2016:8483537. doi: 10.1155/2016/8483537

(15) Benichou T, Pereira B, Mermillod M, Tauveron I, Pfabigan D, Magdasy S, et al. Heart rate variability in type 2 diabetes mellitus: A systematic review and meta–analysis. PloS one. 2018;13(4):e0195166. doi: 10.1371/journal.pone.0195166

(16) Javorka M, Javorková J, Tonhajzerová I, Calkovska A, Javorka K, et al. Heart rate variability in young patients with diabetes mellitus and healthy subjects explored by Poincare and sequence plots. Clin Physiol Funct Imaging. 2005; 25:119–127.

(17) Schroeder E, Chambless LE, Liao D, Prineas RJ, Evans GW, Rosamond WD, et al. Diabetes, Glucose, Insulin, and Heart Rate Variability. Diabetes Care, 2005; 28:668-674.

(18) Bahremand M, Shahebrahimi K, Seyedi F, Montazeri, N. Relationship between changes in heart rate

variability indices and blood glucose control in Type 2 Diabetes Mellitus. Revista Latinoamericana de Hipertension. 2019;14(3), 328-331.

(19) Zaidi AS, Singh PN, Gupta M, Siddiqi SS. Effect of Duration of Diabetes on Heart Rate Variability in Type 2 Diabetes Mellitus. Int J Cur Res Rev. 2018;10(6): 37-42.

(20) Bartels R, Neumamm L, Peçanha T, Carvalho ARS. SinusCor: An advanced tool for heart rate variability analysis. Biomedical Engineering Online. 2017;16(1):110.

(21) Task Force of the European society of cardiology and the North American society of pacing and electrophysiology. Heart rate variability-standards of measurement, physiological interpretation and clinical use. European Heart Journal. 1996;93:1043-65.

(22) DiCiccio TJ, Efron B. Bootstrap confidence intervals. Statistical Science, 189-212, 1996.

(23) Hanley JA, Mcneil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148(3), 839-43.

(24) Hosmer DW, Lemeshow S. Applied Logistic Regression. New York: Wiley, 2000.

(25) Ginter E, Simko V. Type 2 diabetes mellitus, pandemic in 21st century. In Diabetes (pp. 42-50).

Springer, New York, NY, 2013.

(26) Ribeiro ÍJS, Pereira RF, Valença Neto P, Freire IV, Casotti CA, Reis MGD. Relationship between diabetes mellitus and heart rate variability in community-dwelling elders. Medicina. 2017;53(6):375-379.

(27) Cha SA, Park YM, Yun, JS, Seung-Hwan Lee, Yu-Bae Ahn, Sung-Rae Kim, et al. Time-and frequency-domain measures of heart rate variability predict cardiovascular outcome in patients with type 2 diabetes. Diabetes Res Clin Pract. 2018;143:159-169.

(28) Liu Y, Jansen HJ, Rose RA. Impaired parasympathetic nervous system regulation of heart rate and sinoatrial node function in type 2 diabetes mellitus. Biophysical Journal. 2020;118(3):102a.

(29) Stein PK, Barzilay JI, Chaves PH, Domitrovich PP, Gottdiener JS. Heart rate variability and its changes over 5 years in older adults. Age and ageing, 38(2):212-218. doi: 10.1093/ageing/afn292.

(30) Hamidovic A, Van Hedger K, Choi SH, Flowers S, Wardle M, Childs E. Quantitative meta-analysis of heart rate variability finds reduced parasympathetic cardiac tone in women compared to men during laboratory-

based social stress. Neurosci Biobehav Rev. 2020;S0149-7634(19)31029-2. doi: 10.1016/j.neubiorev.2020.04.005.

(31) Mba, C. M., Nganou-Gnindjio, C. N., Azabji-Kenfack, M. et al. (2019). Short term optimization of glycaemic control using insulin improves sympatho-vagal tone activities in patients with type 2 diabetes. Diabetes Res Clin Pract, 157:107875. doi: 10.1016/j.diabres.2019.107875.

(32) Kittnar O. Electrocardiographic changes in diabetes mellitus. Physiological Research. 2015;64:S559.

(33) Bassi D, Cabiddu R, Mendes RG, Tossini N, Arakelin VM, Caruso FCR, et al. Effects of coexistence hypertension and type II diabetes on heart rate variability and cardiorespiratory fitness. Arq Bras de Cardiol. 2018;111(1):64-72.

(34) Agarwal G, Singh SK. Arrhythmias in type 2 diabetes mellitus. Indian Journal of Endocrinology and Metabolism. 2017;21(5):715.

(35) Ziegler D, Strom A, Bönhof G, Püttgen S, Bódis K, Burkart V, et al. Differential associations of lower cardiac vagal tone with insulin resistance and insulin secretion in recently diagnosed type 1 and type 2 diabetes. Metabolism. 2018;79:1-9. doi: 10.1016/j.metabol.2017.10.013.

Downloads

Published

2020-06-30

How to Cite

Materko, W., Freires Fernandes, D. ., & Pereira da Silva Pena, F. . (2020). Stratification of the Type 2 Diabetes Mellitus Based on Heart Rate Variability Parameters in Elderly Women at Rest . British Journal of Healthcare and Medical Research, 7(3), 01–08. https://doi.org/10.14738/jbemi.73.8369