Persistent organic compounds: A review
DOI:
https://doi.org/10.14738/aivp.83.8450Keywords:
: Persistent organic pollutants; polycyclic aromatic hydrocarbons; organochlorine pesticides; polychlorinated biphenyls; degradation; health and environmental problemsAbstract
Persistent organic pollutants (POPs) due to their lipophilic nature hydrophobicity and molecular stability are easily bioaccumulated in the animal tissues, food chains and because the resist to degradation in the environment persist for a long period is considered as silent killers. The developed as well as developing countries produces, utilizes and releases these pollutants in the environment, these pollutants are present in all the segments of the environment viz., atmosphere, sea water, groundwater, surface water, soils, air, sewage sludge, and sewage water, plants (crops) even in bovine, and mother milk. The major route of exposure to human beings is food consumption (vegetables, fruits, fishes, drinking water, beverages as well as bovine or mother’s milk). These pollutants are not only carcinogenic but are also responsible for endocrine disruption, diabetes, obesity, cardiovascular diseases, reproductive problems, behavioural changes, neurological and immunodeficiency disorder etc in the citizenry. Though these pollutants cannot be easily degraded there are few environmental’ processes mainly microbial or photolytic for the degradation of these pollutants to less toxic compounds. This review provides an overview of the concentration of these pollutants in drinking water, surface water, sediments, vegetables, fruits, fishes, and bovine, and mother milk and their impact on human. Few environmental processes for the degradation of these pollutants are also discussed in the review.
References
(1) Umweltbundesamt (Hrsg). In: Polycyclic Aromatic Hydrocarbons Harmful to the Environment! Toxic! Inevitable? Eds. Marc Brandt, Doreen Einhenkel-Arle Publisher: German Environment Agency Section IV 2.3 PO Box 14 06 06813 Dessau-Roßlau January 2016.
(2) Guo W, Pan B, Sakkiah SD, et al. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int J Environ Res Public Health, 2019; 16 (22): 4361-4389.
DOI: 10.3390/ijerph16224361.
(3) World Health Organization (WHO). The use of DDT in malaria vector control, 2007. WHO Position Statement, 2011 World Health Organization 20. Avenue Appia, 1211 Geneva 27, Switzerland [email protected].
(4) Van den Berg H. Global status of DDT and its alternatives for use in vector control to prevent disease. Environmental Health Perspective, 2009; 117: 1656–1663. DOI: 10.1289/ehp.0900785.
(5) Schuhmacher M, Mari M, Nadal M, et al. Concentrations of dioxins and furans in breast milk of women living near a hazardous waste incinerator in Catalonia, Spain. Environment International, 2019; 125: 334-341. DOI:
1016/j.envint.2019.01.074.
(6) Brajenović N, Karačonji IB, Jurič A. Levels of polychlorinated biphenyls in human milk samples in European countries. Archives Industrial Hygiene Toxicology, 2018; 69: 135-153. DOI: 10.2478/aiht-2018-69-3120.
(7) Elibariki E, Maguta MM. Status of pesticides pollution in Tanzania – A Review. Chemosphere, 2017; 178: 154-164. DOI: 10.1016/j.chemosphere.2017.03.036.
(8) Bansal V, Kim Ki-Hyun Review of PAH contamination in food products and theirhealth hazards. Environment International, 2015; 84: 26-38. DOI: 10.1016/j.envint.2015.06.016.
(9) Pongpiachan S, Hattayanone M, Cao J. Effect of agricultural waste burning season on PM 2.5-bound polycyclic aromatic hydrocarbon (PAH) levels in Northern Thailand. Atmospheric Pollution Research, 2017; 8: 1069-1080. DOI: 10.1016/j.apr.2017.04.009.
(10) Wang X, Thai PK, Li Y, et al. Changes in atmospheric concentrations of polycyclic hydrocarbons and polychlorinated biphenyls between the 1990 and 2010 in an Australian city and the role of bushfires as a source. Environmental Pollution, 2016; 213: 223-231. DOI: 10.1016/j. envpol.2016.02.020.
(11) Kong S, Li X, Li L, et al. Variation of polycyclic aromatic hydrocarbons in atmospheric PM 2.5 during winter haze period around 2014 Chinese Spring Festival at Nanjing: Insights of source changes, air mass direction and firework particle injection. Science of the Total Environment, 2015; 520: 59–72. DOI: 10.1016/j.scitotenv.2015.03.001
(12) Caruso JA, Zhang K, Schroeck NJ, et al. Petroleum coke in the urban environment: A review of potential health effects. International Journal of Environmental Research and Public Health, 2015; 12: 6218–6231. DOI: 10.3390/ijerph120606218.
(13) Singh DK, Gupta T. Effect through inhalation on human health of PM 1 bound polycyclic aromatic hydrocarbons collected from foggy days in northern part of India. Journal of Hazardous Materials, 2016; 306: 257-268. DOI:10.1016/j.jhazmat.2015.11.049.
(14) Orecchio S, Amorello D, Barreca S, et al. Wood pellets for home heating can be considered environmentally friendly fuels? Polycyclic aromatic hydrocarbons (PAHs) in their ashes. Microchemical Journal, 2016; 124: 267–271. DOI: 10.1016/j.microc.2015.09.003.
(15) Luo W, Gao J, Bi X, et al. Identification of sources of polycyclic aromatic hydrocarbons based on concentrations in soils from two sides of the Himalayas between China and Nepal. Environmental Pollution, 2016; 212: 424–432. DOI: 10.1016/j.envpol.2015.11.018.
(16) Wang C, Dao X, Zhang LL, et al. Characteristics and toxicity assessment of airborne particulate polycyclic aromatic hydrocarbons of four background sites in China: Zhongguo Huanjing Kexue/China. Environmental Science, 2015; 35: 3543–3549.
(17) Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W. Occurrence of Personal Care Products as Emerging Chemicals of Concern in Water Resources: A Review. Sci Total Environ, 2017; 595: 601-614. DOI: 10.1016/j.scitotenv.2017.03.286.
(18) Adeleye AO, Jin H, Di Y, et al. Distribution and ecological risk of organic pollutants in the sediments and seafood of Yangtze Estuary and Hangzhou Bay, East China Sea. Sci. Total Environ, 2016; 541: 1540–1548. DOI: 10.1016/j.scitotenv.2015.09.124
(19) Barhoumi B, Lemenach K, Dévier MH, et al., Distribution and ecological risk of polychlorinated 625 biphenyls (PCBs) and organochlorine pesticides (OCPs) in surface sediments from the Bizerte lagoon, Tunisia. Environmental science and pollution research international, 2014; 21: 6290–6302. DOI: 10.1007/s11356-013-1709-7.
(20) Fangninou FF, Houedegnon P, Nassali J, et al. Environmental Hazards and Health Impacts of Organochlorine Pesticides (OCPs) qua POPs in Benin’s Cotton Basin. International Journal of Scientific and Research Publications, 2019; 9(11): 268-276. DOI: 10.29322/IJSRP.9.11.2019.p9530.
(21) Al Mahmud MNU, Khalil F, Rahman M, et al., Analysis of DDT and its metabolites in soil and water samples obtained in the vicinity of a closed-down factory in Bangladesh using various extraction methods. Environ. Monit Assess, 2015; 187: 743-755. DOI: 10.1007/s10661-015-4965-9.
(22) Malhat FM, Loutfy NM, Greish SS, et al. A Review of Environmental Contamination by Organochlorine and Organophosphorus Pesticides in Egypt. J Toxicol Risk Assess, 2018; 4:013. DOI: 10.23937/2572-4061.1510013.
(23) Sun H, Giesy JP, Jin XW, Wang J. Tiered probabilistic assessment of organohalogen compounds in the Han River and Danjiangkou Reservoir, central China. Science of the Total Environment, 2017; 586: 163-173. DOI: 10.1016/j.scitotenv.2017.01.194.
(24) Olisah C, Okoh OO, Okoh A.Occurrence of Organochlorine Pesticide Residues in Biological and Environmental Matrices in Africa: A Two-Decade Review. Heliyon, 2020; 6(3):e03518. DOI: 10.1016/j. heliyon.2020.e03518.
(25) Ma Y, Halsall CJ, Crosse JD, et al. Persistent organic pollutants in ocean sediments from the North Pacific to the Arctic Ocean, J Geophys Res Oceans, 2015; 120: 2723–2735.DOI: 10.1002/2014 JC 0106 561.
(26) Unyimadu JP, Osibanjo O, Babayemi JO. Concentration and Distribution of Organochlorine Pesticides in Sediments of the Niger River, Nigeria. Journal of Health & Pollution, 2019; 9(22):190606. DOI: 10.5696/2156-9614-9.22.190606.
(27) Das S, Aria A, Cheng J-O, et al.Occurrence and distribution of anthropogenic persistent organic pollutants in coastal sediments and mud shrimps from the wetland of central Taiwan. PLoS ONE, 2020; 15(1): e0227367. DOI: 10.1371/journal.pone.022736.
(28) Cui X, Dong J, Huang Z. et al. Polychlorinated biphenyls in the drinking water source of the Yangtze River: characteristics and risk assessment. Environ Sci Eur, 2020; 32: 29- 58. DOI: 10.1186/s12302-020-00309-6.
(29) Whitall D, Mason A, Pait A, et al. Organic and metal contamination in marine surface sediments of guanica bay, Puerto Rico. Mar Pollut Bull, 2014; 80: 293–301. DOI: 10.1016/ j.marpolbul.2013.12.053.
(30) Gbeddy G, Glover E, Doyi I, et al. Assessment of organochlorine pesticides in water, sediment, African cat fish and Nile tilapia, consumer exposure and human health implications, Volta Lake, Ghana. J Environ Anal Toxicol, 2014; 5: 1-8. DOI:10.4172/2161-0525.1000297.
(31) Choi JY, Yang DB, Hong GH, et al. Ecological and human health risk from polychlorinated biphenyls and organochlorine pesticides in bivalves of Cheonsu Bay, Korea. Environ Eng Res, 2016; 21(4): 373-383. DOI: 10.4491/eer.2016.010.
(32) Sa´nchez-Avila J, Vicente J, Echavarri-Erasun B, et al. Sources, fluxes and risk of organic micropollutants to the Cantabrian Sea (Spain). Mar Pollut Bull, 2013; 72: 119–132. DOI: 10.1016/ j.marpolbul.2013.04.010.
(33) Bagchi S, Azad AK, Alomgir M, et al. Quantitative Analysis of Pesticide Residues in Some Pond Water Samples of Bangladesh. Asian Journal of Water, Environment and Pollution, 2009; 6: 27-30.
(34) Pan EC, Sun H, Xu QJ, et al. Polycyclic Aromatic Hydrocarbons Concentrations in Drinking Water in Villages along the Huai River in China and Their Association with High Cancer Incidence in Local Population. BioMed Research International, 2015; 2015: Article ID 762832. DOI: 10.1155 /2015 /762832.
(35) Adeniji AO,Okoh OO, Okoh AI.Levels of Polycyclic Aromatic Hydrocarbons in the Water and Sediment of Buffalo River Estuary, South Africa and Their Health Risk Assessment. Archives of Environmental Contamination and Toxicology, 76; 2019: 657-669.
(36) Jazza SH, Al-Adhub AHY, Al-Saad HT. Polycyclic Aromatic Hydrocarbons (PAHs) in water of Al-Kahlaa River in Missan Province, Iraq. IlmuKelautan, 2016; 21: 1-8.DOI: 10.14710/ik.ijms.21.1.1-8.
(37) Du H. Occurrence and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in water resources of the typical plain river network area. IOP Conf Ser: Earth Environ Sci, 2019; 332: 022041. DOI: 10.1088/1755-1315/332/2/022041
(38) Davies OA, Abolude DS.Polycyclic Aromatic Hydrocarbons (PAHs) of Surface Water from Oburun Lake, Niger Delta, Nigeria. Applied Science Reports, 2018; 13: 20-24. DOI: 10.15192/ PSCP.ASR. 71.2016.13.1.2024.
(39) Habibullah-Al-Mamun M, Ahmed MK, Islam MS, et al. Occurrence, Distribution and Possible Sources of Polychlorinated Biphenyls (PCBs) in the Surface Water From the Bay of Bengal Coast of Bangladesh. Ecotoxicol Environ Safey, 2019; 167; 450-458. DOI:10.1016/j.ecoenv.2018.10.052.
(40) .Habibullah-Al-Mamun M , Ahmed MK, Masunaga S, Polycyclic aromatic hydrocarbons (PAHs) in surface water from the coastal area of Bangladesh. Advances in Environmental Research, 2018; 7(3):177-200. DOI: 10.12989/aer.2018.7.3.177.
(41) Koudryashova Y, Chizhova T, Tishchenko P, et al. Sea.sonal Variability of Polycyclic Aromatic Hydrocarbons (PAHs) in a Coastal Marine Area in the Northwestern Region of the Sea of Japan/East Sea (Possiet Bay).Ocean Science Journal, 2019; 54; 635-655. DOI: 10.1007/s12601-019-0031-9.
(42) Zhang H, Sun L, Sun T, et al. Spatial distribution and seasonal variation of polycyclic aromatic hydrocarbons (PAHs) contaminations in surface water from the Hun River, Northeast China. Environ Monit Assess, 2013; 185:1451–1462. DOI: 10.1007/s10661-012-2644-7.
(43) Shen B, Wu J, Zhao Z. Organochlorine pesticides and polycyclic aromatic hydrocarbons in water and sediment of the Bosten Lake, Northwest China. J Arid Land, 2017; 9: 287–298. DOI: 10.1007/s40333-017-0008-4.
(44) Karyab H, Yunesian M, Nasseri S, et al. Polycyclic Aromatic Hydrocarbons in drinking water of Tehran. Journal Environmental Health Science Engineering, 2013; 11: 25-37. DOI: 10.1186/2052-336X-11-25.
(45) Toan VD, Mai NT. Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in water, sediments from Caubay River. Pollution Research Paper, 2019; 38: 86-90.
(46) Edokpayi JN, Odiyo JO, Popoola OE, et al. Determination and Distribution of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District, South Africa. International Journal Environmental Research Public Health, 2016; 13: 387-394. DOI: 10.3390/ ijerph 13040387.
(47) Chen Y, Sun C, Zhang J, et al. Assessing 16 Polycyclic Aromatic Hydrocarbons (PAHs) in River Basin Water and Sediment Regarding Spatial-Temporal Distribution, Partitioning, and Ecological Risks. Pol J Environ Stud, 2018; 27(2): 579–589. DOI: 10.15244/pjoes/75827.
(48) Cai M, Liu M, Hong Q, et al. Fate of Polycyclic Aromatic Hydrocarbons in Seawater from the Western Pacific to the Southern Ocean (17.5°N to 69.2°S) and Their Inventories on the Antarctic Shelf. Environ Sci Technol, 2016; 50: 9161−9168. DOI: 10.1021/acs.est.6b02766.
(49) Zhang A, Zhao S, Wang L, et al., Polycyclic aromatic hydrocarbons (PAHs) in seawater and sediments from the northern Liaodong Bay, China. Marine Pollution Bulletin, 2016; 113: 1-2. DOI: 10.1016/j.marpolbul.2016.09.005.
(50) Jia XM, Li JY, Tian SY. Assessment of polycyclic aromatic hydrocarbons (PAHs) ecological risk in surface seawater from the west Bohai Bay, China.IOP Conference Series: Earth and Environmental Science, Volume 82, 3rd International Conference on Water Resource and Environment (WRE 2017) 26–29 June 2017, Qingdao, China.
(51) Model KJ, Sampaio SC, Remor MB, et al. Organochlorated and Organophossphorus pesticides in the Pelotas river sediment. Eng Agric, 2018; 38: 124-134. DOI:10.1590/1809-4430-Eng.Agric.v38n1p124-134/2018.
(52) Malik A, Verma P, Singh AK, et al. Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India. Environmental Monitoring Assessment, 2011; 172: 529–545. DOI: 10.1007/s10661-010-1352-4.
(53) Aly-Salem DMS, Abou-Elmagd F, Morsy M, et al. The monitoring and risk assessment of aliphatic and aromatic hydrocarbons in sediments of the Red Sea, Egypt. The Egyptian Journal of Aquatic Research, 2014; 40: 333-348. DOI:10.1016/j.ejar.2014.11.003 1687-4285.
(54) Shilla DJ, Routh J. Distribution, Behavior, and Sources of Polycyclic Aromatic Hydrocarbon in the Water Column, Sediments and Biota of the Rufiji Estuary, Tanzania. Front Earth Sci, 2018; 6:70-84. DOI: 10.3389/feart.2018.00070.
(55) Igbo JK, Chukwu LO, Oyewo EO.Assessment of Polychlorinated Biphenyls (PCBs) in Water, Sediments and Biota from Ewaste Dumpsites in Lagos and Osun States, South-West, Nigeria. J. Appl. Sci. Environ. Manage, 2018;
(4): 459 – 464. http://ww.bioline.org.br/ja.
(56) Dirbaba NB, Li S, Wu H, et al. Organochlorine pesticides, polybrominateddiphenyl ethers and polychlorinated biphenyls in surficial sediments of the Awash River Basin, Ethiopia. PLoS ONE, 2018; 13(10): e0205026. DOI: 10.1371/journal.pone.0205026.
(57) Lans-Ceballos E, Padilla-Jiménez AC, Hernández-Rivera SP. Characterization of organochloride pesticides residues in sediments from the Cienaga Grande of the lower Sinú river of Colombia.Cogent Environmental Science (2018), 4: 1436930. DOI: 10.1080/23311843.2018.1436930.
(58) Kofi ED, Kweku AJ, Kweku CS, et al. Levels of Polybrominated diethyl ethers (PBDEs) in some Ghanaian water body environments. Research Journal of Environmental Sciences, 2018; 12(2):73-82. DOI: 10.3923/rjes.2018.73.82
(59) Kim EJ, Kim J-G.Distribution of Organohalogen Compounds in Surface Water and Sediments of Major River Systems across South Korea.Environmental Engineering Science, 2018; 35: 27- 36. DOI:10.1089/ees.2017.0046.
(60) Liu J, Lu G, Zhang F, et al. PolybrominatedDiphenyl Ethers (PBDEs) in a Large, Highly Polluted Freshwater Lake, China: Occurrence, Fate, and Risk Assessment. Int J Environ Res Public Health, 2018; 15(7): 1529. DOI: 10.3390/ijerph15071529.
(61) Lim Y-W, Kim H-H, Lee C-S, et al. Exposure assessment and health risk of poly-brominated diphenyl ether (PBDE) flame retardants in the indoor environment of elementary school students in Korea. Science of the Total Environment, 2014; 470-471; 1376-1389.DOI: 10.1016/j.scitotenv. 2013. 09.013.
(62) Muenhor D, Moon H-B, Lee S, et al. Polybrominated diphenyl ethers (PBDEs) in floor and road dust from a manual e-waste dismantling facility and adjacent communities in Thailand. Journal of Environmental Science and Health Part A, 2017; 52 (14): 1284-1294. DOI: 10.1080/ 10934529. 2017. 1357405.
(63) Shoeib M, Harner T, Webster G, et al. Legacy and current use flame retardants in house dust from Vancouver, Canada. Environ Pollut, 2012; 169: 175-182.DOI: 10.1016/j.envpol.2012.01.043.
(64) Zhu N-Z, Liu L-Y, Ma W-L, et al. Polybrominated diphenyl ethers (PBDEs) in the indoor dust in China: Levels,
spatial distribution and human exposure. Ecotoxicology and Environmental Safety, 2015; 111:1-8. DOI10.1016/j.ecoenv.2014.09.020 0147-6513/& 2014.
(65) Ok G, Shirapova G, Matafonova G, et al. Characteristics of PAHs, PCDD/Fs, PCBs and PBDEs in the sediment of Lake Baikal, Russia. Polycycl Aromat Compd, 2013; 33: 173-192. DOI: 10.1080/10406638.2013.764540.
(66) Zhang Y, Wang W, Song J, et al. Environmental Characteristics of PolybrominatedDiphenyl Ethers in Marine System, with Emphasis on Marine Organisms and Sediments. The Monitoring and Assessment of Aquatic Toxicology, 2016; 2016: Article ID 1317232 | 16 pages. DOI: 10.1155 / 2016/1317232.
(67) Yun SH, Addink R, McCabe JM et al. Polybrominated Diphenyl Ethers and Polybrominated Biphenyls in Sediment and Floodplain Soils of the Saginaw River Watershed, Michigan, USA. Arch Environ Contam Toxicol, 2008; 55, 1–10. DOI: 10.1007/s00244-007-9084-3
(68) Aigars J, Suhareva N, Poikane R. Distribution of PolybrominatedDiphenyl Ethers in Sewage Sludge, Sediments, and Fish from Latvia. Environments, 2017; 4(1): 12-27. DOI: 10.3390 /environments 4010012.
(69) Hu G, Xu Z, Dai J, et al. Distribution of polybrominateddiphenyl ethers and decabromodiphenyl ethane in surface sediments from Fuhe River and Baiyangdian Lake, North China.J Environ Sci, 2010; 22: 1833. DOI: 10.1016/S1001-0742(09)60328-4.
(70) Wang X.-T, Chen L, Wang X-K, et al. Occurrence, profiles, and ecological risks of polybrominateddiphenyl ethers (PBDEs) in river sediments of Shanghai, China. Chemosphere, 2015; 133: 22-30. DOI: 10.1016/j.chemosphere.2015.02.064
(71) Deng D, Chen H, Tam NFY. Temporal and spatial contamination of polybrominated diphenyl ethers (PBDEs) in wastewater treatment plants in Hong Kong. Science of the Total Environment, 2015; 502:133-142. DOI: 10.1016/j.scitotenv.2014.08.090
(72) Annunciação DLR, Almeida FV,Sodré FF. Method development and validation for the determination of polybrominateddiphenyl ether congeners in Brazilian aquatic sediments. Microchem J, 2017; 133: 43. DOI: 10.3390/w11081601.
(73) Pozo K, Kukuˇcka P, Vaˇnková L, et al. PolybrominatedDiphenyl Ethers (PBDEs) in Concepción Bay, central Chile after the 2010 Tsunami. Mar Pollut Bull, 2015; 95:480-483. DOI: 10.1016/ j.marpolbul.2015.03.011
(74) Moon HB, Choi M, Yu J, et al. Contamination and potential sources of polybrominateddiphenyl ethers (PBDEs) in water and sediment from the artificial Lake Shihwa, Korea.Chemosphere, 2012; 88: 837-843. DOI: 10.1016/j.chemosphere.2012.03.091.
(75) Kim KH, Jahan SA, Kabir E, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects.Environment International, 2013; 60: 71–80. DOI: 10.1016/ j.envint.2013.07.019.
(76) Wu Q, Li H, Kuo DTF, et al. Occurrence of PBDEs and alternative halogenated flame retardants in sewage sludge from the industrial city of Guangzhou, China.Environmental pollution, 2016; 220(Part A), 1-9. DOI: 10.1016/j.envpol.2016.09.023 0269-7491
(77) Lee S, Kim S, Lee H-K, et al., Contamination of polychlorinated biphenyls and organochlorine pesticides in breast milk in Korea: Time-course variation, influencing factors, and exposure assessment, Chemosphere, 2013; 93(8):1578-85. Doi: 10.1016/j.chemosphere.2013.08.011.
(78) Wei C, Wang Q, Song X, et al. Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas.Ecotoxicology and Environmental Safety, 2018; 152:
–150. DOI: 10.1016/j.ecoenv.2018.01.039.
(79) 79. Gobelius L, Hedlund J, Dürig W, et al. Per- and polyfluoroalkyl substances in Swedish groundwater and surface water: Implications for environmental quality standards and drinking water guidelines. Environmental Science and Technology, 2018; 52: 4340–4349. DOI: 10.1021/acs.est. 7b05718.
(80) Dai Z, Zeng F. Distribution and Bioaccumulation of Perfluoroalkyl Acids in Xiamen Coastal Waters, 2019, Article ID 2612853: 8 pages. DOI:10.1155/2019/2612853.
(81) Goodrow SM, Ruppel B, Lippincott L, et al. Investigation of Levels of Perfluorinated Compounds in New Jersey Fish, Surface Water, and Sediment New Jersey. Research, and Environmental Health, 2018; 729: 138839. DOI:10.1016 /j.scitotenv.2020.138839.
(82) Sánchez-Soberón F,Sutton R,Sedlak M, et al. Multi-box mass balance model of PFOA and PFOS in different regions of San Francisco Bay. Chemosphere, 2020; 252: 126454. DOI: 10.1016/j. chemosphere.2020.126454.
(83) Guerranti, Martellini C, Fortunati T, et al. Environmental pollution from plasticiser compounds: Do we know enough about atmospheric levels and their contribution to human exposure in Europe?. Food Prot, 2018; 81(5):842-847. DOI: 10.4315/0362-028X.JFP-17-476.
(84) Zhang Y-Z, Wang B, Wang W, et al. Occurrence and source apportionment of Per- and poly-fluorinated compounds (PFCs) in North Canal Basin, Beijing. Scientific Reports, 2016; 6: Article number: 36683. DOI: 10.1038/srep36683
(85) Pan G, Zhou Q, Luan X, et al. Distribution of Perfluorinated Compounds in Lake Taihu (China): Impact to Human Health and Water Standards. Science of the Total Environment, 2014; 487:778-784. DOI: 10.1016/j.scitotenv.2013.11.100.
(86) Lescord GL, Kidd KA, De Silva AO, et al. Perfluorinated and Polyfluorinated Compounds in Lake Food Webs from the Canadian High Arctic. Environ Sci Technol, 2015; 49: 2694−2702. DOI: 10.1021/ es5048649.
(87) Lv J, Guo C, Liang S, et al., Partitioning behavior, source identification, and risk assessment of perfluorinated compounds in an industry-influenced river. Environmental Sciences Europe, 2019; 31: 55-64. DOI: 10.1186/s12302-019-0251-8.
(88) Sturm R. Polyfluorinated compounds - a new class of global pollutants in the coastal environment. 2019. www.coastalwiki.org/wiki/Polyfluorinated compounds a new class of global pollutants in the coastal environment
(89) D’Hollander W, Roosens L, Covaci A, et al. Brominated flame retardants and perfluorinated compounds in indoor dust from homes and offices in Flanders, Belgium. Chemosphere, 2010; 81: 478-487. Doi: 10.1016/j.chemosphere.2010.07.043.
(90) Beškoskia VP, Takemine S, Nakano T, et al. Perfluorinated compounds in sediment samples from the wastewater canal of Panc ˇevo (Serbia) industrial area. Chemosphere, 2013; 91: 1408-1415. DOI: 10.1016/j.chemosphere.2012.12.079.
(91) Sciuto S, Prearo M, Desiato R, et al. Dioxin-like Compounds in Lake Fish Species: Evaluation by DR-CALUX Bioassay. Journal of Food Protection, 2018; 81 (5): 842–847. DOI: 10.4315/0362-028X.JFP-17-476.
(92) Chaza C, Sopheak N, Mariam H, et al., Assessment of pesticide contamination in Akkar groundwater, northern Lebanon.Environmental Science and Pollution Research, 2018; 25:14302–14312. DOI: 10.1007/s11356-017-8568-6.
(93) Balakrishna K, Rath A, Praveenkumarreddy Y, et al.A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies.Ecotoxicology and Environmental Safety, 2017; 137: 113-120. DOI: 10.1016/j.ecoenv.2016.11.014 .
(94) Calderón-Preciado D.Uptake of microcontaminants by crops irrigated with reclaimed water and groundwater under real field greenhouse conditions.Environ Sci Pollut Res, 2013; 20: 3629-3638. DOI: 10.1007/s11356-013-1509-0.
(95) González-Naranjo V. Environmental risk of combined emerging pollutants in terrestrial environments: chlorophyll a fluorescence analysis. Environ Sci Pollut Res, 2015; 22: 6920-6931. DOI: 10.1007/s11356-014-3899-z.
(96) Peng X, Tan J, Tang C, et al.Multi residue determination of fluoroquinolone, sulfonamide, trimethoprim, and chloramphenicol antibiotics in urban waters in China. Environ Toxicol Chem, 2008; 27 (1): 73−79. DOI: 10.1897/06-650.1.
(97) Kimosop S, Getenga ZM, Orata F, et al. Residue levels and discharge loads of antibiotics in wastewater treatment plants (WWTPs), hospital lagoons, and rivers within Lake Victoria Basin, Kenya. Environmental Monitoring and Assessment, 2016; 188(9):532-538. DOI: 10.1007/s10661-016-5534-6.
(98) Ghosh GC, Hanamoto S, Yamashita N, et al. Antibiotics Removal in Biological Sewage Treatment Plants. Pollution, 2016; 2(2): 131-139. DOI: 10.7508/pj.2016.02.003.
(99) Diwan V, Tamhankar AJ, Khandal R K, et al. Antibiotics and antibioticresistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health, 2010; 10: 414-421. DOI: 10.1186/1471-2458-10-414.
(100) Verma P, Gupta M, Parasher P. Occurrence and Distribution of Antibiotic substances in waste water from Hospital effluent. International Journal of Recent Research and Review, 2017; 10: 17-23.
(101) Awad YM, Kim S-C, Abd El-Azeem SAM, et al., Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ Earth Sci, 2014; 71:1433–1440. DOI: 10.1007/s12665-013-2548-z.
(102) Liyanage GY, Manage PM.Occurrence, Fate and Ecological Risk of Antibiotics in Hospital effluent water and Sediments in Sri Lanka.International Journal of Agriculture and Environmental Research, 2016; 2: 909-935.
(103) Bartrons M, Penuelas J.Pharmaceuticals and Personal –Care products in plants. Opinion, 2017; 22:194-203. DOI : 10.1016/j.tplants.2016.12.010.
(104) Yang Y, Owino AA, Gao Y, et al. Occurrence, composition and risk assessment of antibiotics in soils from Kenya, Africa. Ecotoxicology, 2016; 25: 1194–1201. DOI: 10.1007/s10646-016-1673-3.
(105) Al-Farsi R, Ahmed M, Al-Busaid, A. et al. Assessing the presence of pharmaceuticals in soil and plants irrigated with treated wastewater in Oman. Int J Recycl Org Waste Agricult, 2018; 7: 165–172. DOI: 10.1007/s40093-018-0202-1.
(106) Muir D, Simmons D, Wang X. et al. Bioaccumulation of pharmaceuticals and personal care product chemicals in fish exposed to wastewater effluent in an urban wetland. Sci Rep, 2017; 7: 16999. DOI: 10.1038/s41598-017-15462-x.
(107) Chuang Y-H, Liu H, Sallach JB, et al. Mechanistic study on uptake and transport of pharmaceuticals in lettuce from water. Environment International, 2019; 131:104976. DOI:10.1016/j.envint.2019.104976.
(108) Lu J, Li H, Luo Z, et al. Occurrence, Distribution, and Environmental Risk of Four Categories of Personal Care Products in the Xiangjiang River, China. Environ Sci Pollut Res Int, 2018; 25 (27): 27524-27534. DOI: 10.1007/s11356-018-2686-7.
(109) Emmanouil C, Bekyrou M, Psomopoulos C, et al. A. An Insight into Ingredients of Toxicological Interest in Personal Care Products and A Small–Scale Sampling Survey of the Greek Market: Delineating a Potential Contamination Source for Water Resources. Water, 2019; 11(12) ; 2501-2537. DOI: 10.3390/w11122501.
(110) Díaz-Cruz MS, Molins-Delgado D, Serra-Roig MP, et al. Personal care products reconnaissance in Evrotas River (Greece): Water-sediment partition and bioaccumulation in fish. Science of the Total Environment, 2019; 651: 3079-3089. DOI: 10.1016 / j.scitotenv.2018.10.008
(111) Prosser RS, Stefan Trapp S, Sibley PK. Modeling uptake of selected pharmaceuticals and personal care products into food crops from biosolids-amended soils. Environ. Sci. Technol, 2014; 48: 11397-11404. DOI: 10.1021/es503067v.
(112) Liu WR, Zhao JL, Liu YS, et al. Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment. Environ Pollut, 2015; 200: 53–63. DOI: 10.1016/ j.envpol. 2015. 02.013.
(113) Subedi B, Kannan K. Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in New York State, USA. Science of the Total Environment, 2015; 514: 273-280. DOI: 10.1016/j.scitotenv.2015.01.098.
(114) Wu X, Dodgen LK, Conkle JL, et al. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: a review. Science of the Total Environment, 2015; 536: 655–666. DOI: 10.1016/j.scitotenv.2015.07.129
(115) Chander V, Sharma B, Negi V, et al., Pharmaceutical Compounds in Drinking Water. J Xenobiot, 2016; 6(1): 5774-5787. DOI: 10.4081/xeno.2016.5774
(116) Bartha B, Huber C, Schröder P.Uptake and metabolism of diclofenac in Typha latifolia – how plants cope with human pharmaceutical pollution. Plant Sci, 2014; 227: 12-20. DOI: 10.1016 /j.plantsci. 2014. 06.001.
(117) Patel P, Kumar R, Kishor K, et al. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev, 2019; 119(6); 3510–3673.DOI: 10.1021/acs.chemrev.8b00299.
(118) Shenker M, Harush D, Ben-Ari J, et al. Uptake of Carbamazepine by Cucumber Plants–a Case Study Related to Irrigation with Reclaimed Wastewater.Chemosphere, 2011; 82: 905– 910. DOI: 10.1016/j.chemosphere.2010.10.052.
(119) Jonathan JWA, Woananu-Aggor SEE, Adatara P, et al. Variations of polychlorinated biphenyls (PCBs) levels in the bivalve Galatea paradoxa from Ada, in Ghana, during the dry and wet seasons. J Environ ChemToxicol, 2018; 2(2):48-56.
(120) Batt AL, Wathen JB, Lazorcha JM, et al. Statistical survey of persistent organic pollutants, risk estimations to humans and wildlife through consumption of fish from U.S. Rivers. Environ. Sci Technol, 2017; 51: 3021-3031. DOI: 10.1021/acs.est.6b05162.
(121) Hasan MN, Islam HR, Ahmed K, et al. Screening and quantification of dichlorodiphenyltrichloroethane (DDT) and Dichlorovos in selected dry fish species of Bangladesh by GC–ECD detector. Int J Sci Res Manag
(IJSRM), 2013; 1: 352–353.
(122) Hasan MN, Islam HR, Akter R, et al. Dichlorodiphenyl trichloroethane residues levels in commercial marine dry fish from different regions of Bangladesh. Ann Res Rev Biol, 2014; 4 (17): 2722–2729.
(123) Natesan U. Accumulation of organic pollutants in aquatic organisms from Ennore estuary, Chennai, India. Asian Journal of Chemistry, 2012; 25: 2392-2394.DOI: 10.14233/ajchem.2013.13331.
(124) Jamieson A, Malkocs T, Piertney S, et al. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol, 2017; 1: 0051. DOI: 10.1038/s41559-016-0051.
(125) Zhao L, Dong YH, Wang H. Residues of organochlorine pesticides and polycyclic aromatic hydrocarbons in farm-raised livestock feeds and manures in Jiangsu, China. The Science of the Total Environment, 2013; 450–451: 348-355. DOI: 10.1016/ j.scitotenv.2012.09.017
(126) Pardo O, Beser MI, Yusa V. Probabilistic risk assessment of the exposure to polybrominated diphenyl ethers via fish and seafood consumption in the Region of Valencia (Spain). Chemosphere, 2014; 104: 7-14. DOI:10.1016/j.chemosphere.2013.12.084.
(127) Visha A, Gandhi N, Bhavsar SP, et al. A Bayesian assessment of polychlorinated biphenyl contamination of fish communities in the Laurentian Great Lakes Chemosphere, 2018; 210: 1193-1206. DOI: 10.1016/j.chemosphere.2018.07.070.
(128) Mendes RA, Ricardo MOL, De Deus JA, et al., Assessment of DDT and mercury levels in fish and sediments in the Iriri River, Brazil: Distribution and ecological risk. Journal of Environmental Science and Health, Part B, 2019; 54: 915-924. DOI: 10.1080/03601234.2019.1647060.
(129) Barone G, Storelli A, Garofalo R, et al., PCBs and PCDD/Fs in Bluefin Tuna: Occurrence and Dietary Intake. Int J Environ Res Public Health 2018; 15: 911-923. DOI: 10.3390/ijerph15050911.
(130) Corsolini S, Borghesi N, Schiamone A, et al. Polybrominated diphenyl ethers, polychlorinated dibenzo-dioxins, -furans, and -byphenyls in three species of Antarctic penguins.Environmental Science and Pollution Research, 2007; 14: 421–429. DOI: 10.1065/espr2006.01.017.
(131) Thompson LA, Ikenaka Y, Yohannes YB, et al. Concentrations and human health risk assessment of DDT from KwaZulu-Natal South Africa. Food Additives & Contaminants: Part A, 2017; 34: 1959-1969. DOI: 10.1080/19440049.2017.1357209.
(132) Lawrence E, Ozekeke O, Isioma T. Distribution and ecological risk assessment of pesticide residues in the surface water, sediments and fish fromk Ogbesse River, Edo state, Nigeria. Iournal of Environmental Chemistry and Ecotoxicology, 7:2015; 20-30.
(133) Barnhoorn IEJ, van Dyk JC, Genthe B, et al. Organochlorine pesticide levels in Clarias gariepinus from polluted freshwater impoundments in South Africa and associated human health risks. Chemosphere, 2015; 120:391–397. DOI: 10.1016/j.chemosphere. 2014. 08.030.
(134) Sun Y, Zhang Z, Xu X, et al. Bioaccumulation and biomagnifications of halogenated organic pollutants in mangrove biota from the Pearl River Estuary, South China. Marine Pollution Bulletin, 2015; 99: 150-156. DOI: 10.1016/j.marpolbul.2015.07.041.
(135) Yu L, Luo X, Liu H, et al. Organohalogen contamination in passerine birds from three metropolises in China: Geographical variations and its implication for anthropogenic effects on urban environments. Environ Pollut, 2014; 188: 118-123. DOI: 10.1016/j.envpol.2014.01.023.
(136) Su G, Saunders D, Yu Y, et al. Occurrence of additive brominated flame retardants in aquatic organisms from Tai Lake and Yangtze River in Eastern China, 2009-2012. Chemosphere, 2014; 114: 340-346.DOI: 10.1016/j.chemosphere.2014.05.046.
(137) Kakimoto K, Nagayoshi H, Yoshida J, et al. Detection of Dechlorane Plus and brominated flame retardants in marketed fish in Japan. Chemosphere, 2012; 89: 416-419. DOI: 10.1016 /j.chemosphere. 2012.05.072.
(138) Zargar NF, Gill JPS.Studies on Levels of Pesticides Residues in Market Fish of Punjab (India). Int J Curr Microbiol App Sci, 2018; 7(8): 2899-2905. DOI: 10.20546/ijcmas.2018.708.307
(139) Kim S-K.Trophic transfer of organochlorine pesticides through food-chain in coastal marine ecosystem.
Environmental Engineering Research, 2020; 25(1): 43-51. DOI: 10.4491/ eer. 2019.003.
(140) Jürgens MD, Crosse J, Hamilton PB, et al. The long shadow of our chemical past – High DDT concentrations in fish near a former agrochemicals factory in England.Chempsphere, 2016;162:333-344. DOI: 10.1016/j.chemosphere.2016.07.078.
(141) Unyimadu JP, Osibanjo O, Babayemi JO.Levels of Organochlorine Pesticides in Brackish Water Fish from Niger River, Nigeria. Journal of Environmental and Public Health, 2018; 2018: Article ID 2658306,| 9 pages. DOI: 10.1155/2018/2658306.
(142) Yin G, Zhou Y, Strid A, et al.Spatial distribution and bioaccumulation of polychlorinated biphenyls (PCBs) and polybrominateddiphenyl ethers (PBDEs) in snails (Bellamyaaeruginosa) and sediments from Taihu Lake area, China. Environmental Science and Pollution Research, 2017; 24: 7740-7751. DOI: 10.1007/s11356-017-8467-x
(143) Ulusoy S, Özden Ö, Päpke O. Organochlorine pesticide and polychlorinated biphenyl levels of horse mackerel (Trachurus sp.) caught from Marmara Sea coastal sites. Journal of the Marine Biological Association of the United Kingdom, 2017; 97, 401-407. DOI: 10.1017/ S0025315416000503.
(144) Yehouenou A, Pazou E, Glin LC, et al., Pesticide contamination of the Dridji cotton plantation area in the Republic of Benin. African Journal of Food Agriculture Nutrition and Development, 2014; 14: 8885-8902. .
(145) Klosterhaus SL, Stapleton HM, La Guardia MJ, et al. Brominated and chlorinated flame retardants in San Francisco Bay sediments and wildlife. Environ Int, 2012; 47:56-65. DOI: 10.1016/ j.envint.2012.06.005.
(146) Law R, Losada S, Barber J, et al. Alternative flame retardants, Dechlorane plus and BDEs in the blubber of harbor porpoises (Phocoena phocoena) stranded or by caught in the UK during 2008. Environ Int, 2013; 60: 81-88. DOI: doi: 10.1016/j.envint.2013.08.009
(147) Lal V, Bridgen P, Votadroka W, Raju R, et al. Characterization of organochlorine pesticides, brominated flame retardants and dioxin like compounds in shellfish and eel from Fiji. Sci Total Environ, 2014; 492: 200-204. DOI: 10.1016/j.scitotenv.2014.01.125.
(148) Li N, Luo J, Na S, et al. Determination of PolybrominatedDiphenyl Ethers (PBDEs) in Freshwater Fish Around a Deca-brominated Diphenyl Ether (deca-BDE) Production Facility by Gas Chromatography-Mass Spectrometry (GC-MS). Analytical Letters, 2019; 52;18: 2951-2960. DOI: 10. 1080/00032719.2019.1632336.
(149) Heimstad ES, Grønstøl G, Hetland KT, et al. A survey of dioxin-like contaminants in fish from recreational fishing.Environ Monit Assess, 2015; 187: 509-514. DOI: 10.1007/s10661-015-4728-7.
(150) Rawn DFK, Dowd M, Scuby MJS, et al. Polychlorinated Biphenyls and Polychlorinated Dioxins–Furans in Lake Trout and Whitefish Composite Samples from Commercial Fisheries in Lakes Erie, Huron, and Superior.J Food Prot, 2017; 80 (8): 1228–1238. DOI:10.4315/0362-028X.JFP-16-530
(151) Ikkere LE, Perkons I, Sire J, et al. Occurrence of polybrominateddiphenyl ethers, perfluorinated compounds, and nonsteroidal anti-inflammatory drugs in freshwater mussels from Latvia. Chemosphere, 2018; 213: 507-516. DOI: 10.1016/j.chemosphere.2018.09.03
(152) Aznar-Alemany O, Trabalon L, Jacobs S, et al. Occurrence of halogenated flame retardants in commercial seafood species available in European markets. Food Chem Toxicol, 2017; 104: 35-47. DOI: 10.1016/j.fct.2016.12.034.
(153) Perez-Fuentetaja A, Mackintosh SA, Zimmerman LR, et al. Trophic transfer of flame retardants (PBDEs) in the food web of Lake Erie. Can J Fis. Aquat Sci, 2016; 72: 1886-1896.DOI: 10.1139/ cjfas2015-0088.
(154) Fair PA, Wolf B, White ND, et al. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment. Environmental Research, 2019; 171: 266-277. DOI: 10.1016/j.envres.2019.01.021.
(155) Simmonet-Laprade C, Budzinski H, Babut M, et al. Investigation of the spatial variability of poly- and perfluoroalkyl substance trophic magnification in selected riverine ecosystems. Science of the Total Environment, 2019; 393-401. DOI: 10.1016/j.scitotenv.2019.05.461f.
(156) Olatunji OS. Evaluation of selected polychlorinated biphenyls (PCBs) congeners and dichlorodiphenyltrichloroethane (DDT) in fresh root and leafy vegetables using GC-MS. Sci Rep, 2019; 9: 538-547. DOI: 10.1038/s41598-018-36996-8
(157) Abou-Arab AAK, Abou-Donia MA M, El-Dars FMSE, et al. Levels of polycyclic aromatic hydrocarbons (PAHS) in some Egyptian vegetables and fruits and their influences by some treatments. Int J Curr Microbiol App Sci, 2014; 3(7): 277-293.
(158) Bolor VK, Boadi NO, Borquaye LS, et al. Human Risk Assessment of Organochlorine Pesticide Residues in Vegetables from Kumasi, Ghana.Hindawi Journal of Chemistry, 2018: 2018: Article ID 3269065, 11 pages. DOI: 10.1155/2018/3269065.
(159) Oyeyiola AO, Fatunsin OT, Akanbi LM, et al. Human Health Risk of Organochlorine Pesticides in Foods Grown in Nigeria. J Health Pollut, 2017; 7(15): 63–70. DOI: 10.5696/2156-9614-7.15.63.
(160) Grassi P, Fattore E, Generoso C, et al. Polychlorobiphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in fruit and vegetables from an industrial area in northern Italy. Chemosphere, 2010; 79(3):292- 298. DOI: 10.1016/j.chemosphere.2010.01.028.
(161) Tran-Lam T-T, Dao YH, Nguyen LKT, et al. Simultaneous Determination of 18 Polycyclic Aromatic Hydrocarbons in Daily Foods (Hanoi Metropolitan Area) by Gas Chromatography–Tandem Mass Spectrometry. Foods, 2018; 7: 201-216. DOI: 10.3390/foods7120201.
(162) Koranteng SS, Frimpong SK Ameka GK, et al. Organochlorine pesticide residues in fruits and vegetables cultivated along the Afram River and their associated health risk. Journal of Ghana Science Association, 2017; 17: 25-31.
(163) Forkuoh F, Boadi NO, Borquaye LS, et al. Risk Of Human Dietary Exposure to Organochlorine Pesticide Residues In Fruits From Ghana. Sci Rep, 2018; 8: 16686. DOI: 10.1038/s41598-018-35205-w
(164) Azmi NI, Leong YH, Abdul Majid MI. Present Status and Future Perspectives on Dioxins/Furans and Polychlorinated Biphenyls Policies in Malaysia. Ann Environ SciToxicol, 2017; 2(1): 005-009. DOI: 10.17352/aest.000006.
(165) Elserougy S, Beshir S, Saad-Hussein A,et al. Organochlorine pesticide residues in biological compartments of healthy mothers. Toxicology and Industrial Health, 2013; 29(5):441-448. DOI: 10.1177/0748233712436645.
(166) Bergkvist C, Aune M, Nilsson I, et al., Occurrence and levels of organochlorine compounds in human breast milk in Bangladesh. Chemosphere, 2012; 88(7):784-790. DOI: 10.1016/j.chemosphere. 2012.03.08.
(167) Haque R, Inaoka T, Fujimura M, et al. Intake of DDT and its metabolites through food items among reproductive age women in Bangladesh. Chemosphere, 2017; 189:744-751. DOI: 10.1016/ j. chemosphere.2017.09.041.
(168) Ntow WJ. Organochlorine Pesticides in Water, Sediment, Crops, and Human Fluids in a Farming Community in Ghana.Arch Environ Contam Toxicol, 2001; 40(4):557-63. DOI: 10.1007/ s002440010210.
(169) Hassine SB, Ameur WB, Gandoura N, et al. Determination of chlorinated pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers in human milk from Bizerte (Tunisia) in 2010.Chemosphere, 2012; 89: 369-377. DOI: 10.1016 /j.chemosphere.2012.05.035.
(170) Hassine SB, Hammami B, Ameur WB, et al. Concentrations of organochlorine pesticides and polychlorinated biphenyls in human serum and their relation with age, gender, and BMI for the general population of Bizerte, Tunisia. Environ Sci Pollut Res, 2014; 21:6303–6313. DOI: 10.1007/s11356-013-1480-9.
(171) Artacho-Cordón F, Belhassen H, Arrebola JP, et al., Serum levels of persistent organic pollutants (POPs), predictors of exposure and relationship with breast cancer in a female population of Tunisia. Clinical Chem Lab Med, 2015; 511: 530–534. DOI: 10.1016/j.scitotenv.2014.12.093.
(172) Elbashir AB, Abdelbagi AO, Hammad AMA, et al. Levels of organochlorine pesticides in the blood of people living in areas of intensive pesticide use in Sudan. Environ Monit Assess, 187: 68-77. DOI: 10.1007/s10661-015-4269-0.
(173) Luzardo OP, Boada LD, Carranza C,et al. Socio-economic development as a determinant of the levels of organochlorine pesticides and PCBs in the inhabitant of Western and Central African countries. Sci. Total Environ, 2014; 497-498C: 97–105. DOI: 10.1016/j.scitotenv.2014.07.124.
(174) Ryan JJ, Rawn DF.Polychlorinated dioxins, furans (PCDD/Fs), and polychlorinated biphenyls (PCBs) and their trends in Canadian human milk from 1992 to 2005. Chemosphere, 2014; 102:76–86, DOI: 10.1016/j.chemosphere.2013.12.065.
(175) Kao C-C, Que DE, Bongo SJ, et al., Residue Levels of Organochlorine Pesticides in Breast Milk and Its Associations with Cord Blood Thyroid Hormones and the Offspring’s Neurodevelopment. Int J Environ Res Public Health, 2019; 16(8): 1438.DOI: 10.3390/ijerph16081438.
(176) Bramwell L, Fernandes A, Rose M, et al. PBDEs and PBBs in human serum and breast milk from cohabiting UK couples. Chemosphere, 2014; 116: 67-74. DOI: 10.1016 /j.chemosphere.2014.03.060.
(177) Fuji Y, Nishimura E, Kato Y, et al. Dietary exposure to phenolic and methoxylated organohalogen contaminants in relation to their concentrations in breast milk and serum in Japan. Environ. Int, 2014; 63: 19–25. DOI: 10.1016/j.envint.2013.10.016.
(178) Raslan AA, Elbadry S, Darwis WS. Estimation and Human Health Risk Assessment of Organochlorine Pesticides in Raw Milk Marketed in Zagazig City, Egypt.Hindawi Journal of Toxicology, 2018; 2018, Article ID 3821797, 8 pages. DOI: 10.1155/2018/3821797.
(179) Deti H, Hymete A, Bekhit AA, et al. Persistent organochlorine pesticides residues in cow and goat milks collected from different regions of Ethiopia. Chemosphere, 2014; 106: 70-74. DOI: 10.1016/ j.chemosphere.2014.02.012.
(180) Gao P, da Silva E, Hou L, et al. Human exposure to polycyclic aromatic hydrocarbons: Metabolics perspective. Environment International, 2018; 119: 466-477. DOI: 10.1016 /j.envint. 2018. 07.017.
(181) World Health Organization, Persistent Organic Pollutants: Impact on Child Health.2010. World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland.
(182) Alharbi OML, Basheer AA, Khattab RA, et al. Health and environmental effects of persistent organic pollutants, Journal of Molecular Liquids, 2018; 263: 442–453. DOI: 10.1016/j.molliq. 2018. 05. 029.
(183) Mutiyar P, Mittal A. Pharmaceuticals and Personal Care Products (PPCPs) Residues in Water Environment of India: A Neglected but Sensitive Issue, 28th National Convention of Environmental Engineers and National Seminar on Hazardous Waste Management and Healthcare in India, March 9-10,2013 Patna, India, Institute of Engineers. (https://www.researchgate.net/publication/261795740 Pharmaceuticals and Personal Care Products PPCPs Residues in Water Environment of India A Neglected but SensitiveIssue.
(184) Bourguet D, Guillemaud, T.The Hidden and External Costs of Pesticide Use. In: Lichtfouse E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, 2016; 19: 35-120. Springer,
(185) Amr S, Dawson R, Saleh DA, et al., Pesticides, gene polymorphisms, and bladder cancer among Egyptian agricultural workers. Arch Environ Occup. Health, 2015; 70 (1): 19–26. DOI: 10.1080/ 19338244.2013. 853646.
(186) Mostafalou, S, Abdollahi, M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol, 2013; 268(2):157-77. DOI: 10.1016/j .taap. 2013.01.025.
(187) Khanna, R, Gupta, S. Agrochemicals as a potential cause of groundwater pollution: A review. Intern J of Chemical Studies, 2018; 6: 985-990.
(188) Shrivastava, P, Singh, P, Bajpai, A.Study of adverse effects of pesticides contamination in groundwater.Journal of Environmental Science.Toxico. And Food Technol, 2015; 1: 30-33.
(189) Koutros, S, Silverman, DT, Alavanja, MC, et al. Occupational exposure to pesticides and bladder cancer risk. Int J Epidemiol, 2015; 45: 792-805.DOI:10.1093/ije/ dyv195.
(190) Trabert B, Chen Z, Kannan K,, et al. Persistent organic pollutants (POPs) and fibroids: results from the ENDO Study, J Expo Sci Environ Epidemiol, 2015; 25(3): 278–285. DOI: 10.1038/ jes.2014.31.
(191) Penel J, Lind L, Salihovic S, et al. Persistent organic pollutants are related to the change in circulating lipid levels during a 5 year follow-up. Environmental Research, 2014; 134: 190-197. DOI: 10.1016/j.envres.2014.08.005
(192) Jaacks, LM, Staimez, LR. Association of persistent organic pollutants and non-persistent pesticides with diabetes and diabetes-related health outcomes in Asia: a systematic review. Environ Int, 2015; 76: 57–70. DOI: 10.1016/j.envint.2014.12. 001.
(193) Lyche JL, Grześ IM, Karlsson C, et al. Parental exposure to natural mixtures of persistent organic pollutants (POP) induced changes in transcription of apoptosis-related genes in offspring zebrafish embryos. Journal of Toxicology and Environmental Health, Part A, 2016; 79:13-15: 602-611. DOI: 10.1080/15287394.2016.1171991.
(194) Gauthier M-S, Rabasa-Lhoret R, Prud'homme, D, et al. The Metabolically Healthy But Obese Phenotype Is Associated With Lower Plasma Levels of Persistent Organic Pollutants as Compared to the Metabolically Abnormal Obese Phenotype. The Journal of Clinical Endocrinology & Metabolism, 2014; 99 (6): E1061–E1066. DOI: 10.1210/jc.2013-3935.
(195) Lal, Kunjlata. Groundwater: its contamination, pollution and its prevention in India.J of Res in Human and Social Sci, 2018; 6: 10-12.
(196) Louis GMB, Chen Z, Schisterman EF, et al. Perfluorochemicals and Human Semen Quality: The Life Study. Environ Health Perspect, 2015; 123(1): 57–63. DOI: 10.1289/ehp.1307621.
(197) Dong G, Tung K, Tsai C, et al. Serum polyfluoroalkyl concentrations, asthma outcomes, and immunological markers in a case-control study of Taiwanese children. Environ. Health Perspect, 2013; 121:507–513. DOI: 10.1289/ehp.1205351.
(198) Fisher M, Arbuckle TE, Wade M, et al. Do perfluoroalkyl substances affect metabolic function and plasma lipids?—Analysis of the 2007–2009. Environmental Research, 2013; 121:95-103. DOI: 10.1016 / j.envres.2012.11.006.
(199) Darrow LA, Stein CR, Steenland K. Serum Perfluorooctanoic Acid and Perfluorooctane Sulfonate Concentrations in Relation to Birth Outcomes in the Mid-Ohio Valley, 2005–2010. Environ Health Perspect, 2013; 121(10): 1207–1213. DOI: 10.1289/ehp.1206372.
(200) Wang J, Zhang Y, Zhang W, et al. Association of perfluorooctanoic acid with HDL cholesterol and circulating miR-26b and miR-199-3p in workers of a fluorochemical plant and nearby residents. Environ Sci Technol, 2012; 46: 9274-9281. DOI: 10.1021/es300906q.
(201) CDC (Centers for Disease Control and Prevention). 2014. Fourth National Report on Human Exposure to Environmental Chemicals. Atlanta, GA: National Center for Environmental Health; Division of Laboratory Sciences. Available: http://www.cdc.gov/ exposure report.
(202) Gregoraszczuka EL, Ptaka A, Karpetaa A, et al. Hexachlorobenzene and pentachlorobenzene accumulation, metabolism and effect on steroid secretion and on CYP11A1 and CYP19 expression in cultured human placental tissue. Reprod Toxicol, 2014; 43: 102-110. DOI: 10.1016 / j.reprotox. 2013. 12.004.
(203) Sandra OP, Fernández F, Quijano L, et al. Polybrominateddiphenyl ethers in foods from the Region of Valencia: Dietary exposure and risk assessment. Chemosphere, 2020; 250:12647. DOI: 10. 1016/1j.chemosphere.2020.126247
(204) Rengarajan T, Rajendran P, Nandakumar N, et al. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine, 2015; 5: 182-189. DOI: 10.1016/S2221-1691(15)30003-4
(205) Marris CR, Kompella SN, Miller MR, et al. Polyaromatic hydrocarbons in pollution: a heart-breaking matter. J Physiol, 2020; 598: 227–247. DOI: 10.1113/JP278885
(206) Jurewicz J, Radwan M, Sobala W, et al. Association between a biomarker of exposure to polycyclic aromatic hydrocarbons and semen quality. Int J Occup Med Environ Health, 2013; 26(5):790–801. DOI: 10.2478/s13382-013-0152-9.
(207) Montaño-Soto T, Garza-Ocañas L, Badillo-Castañeda C, et al. Determination of polycyclic aromatic hydrocarbons in ambient particulate matter PM 2.5 and 1-hydroxypyrene in children from an area near an oil refinery in Northeast Mexico, Human and Ecological Risk Assessment: An International Journal, 2017; 23: 125-140. DOI: 10.1080/10807039.2016.1229118
(208) IPCS (International Programme on Chemical Safety). Polycyclic aromatic hydrocarbons, selected nonheterocyclic, 2010. Available at: http://www.inchem.org/documents/ehc/ehc/ehc202.htm.
(209) National Toxicology Program (NTP), 12th Report on Carcinogens, Rep Carcinog, 2011, 12, iii-499, http://ntp.niehs.nih.gov/go/19914.
(210) Croom EL, Shafer TJ, Evans MV et al., Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: a case study of lindane-induced neurotoxicity. Toxicol Appl Pharmacol, 2015; 283:9–19. DOI: 10.1016/j.taap.2014.11.006.
(211) Sharma N, Garg D, Deb R, et al.. Toxicological Profile of Organochlorines Aldrin and Dieldrin: An Indian Perspective. Rev Environ Health, 2017; 32(4):361-372. DOI: 10.1515/reveh-2017-0013.
(212) Najam L, Alam T. Levels and distribution of OCPs, (specially HCH, Aldrin, Dieldrin, DDT, Endosulfan) in Karhera Drain & surface water of Hindon River & their adverse effects. Orient J Chem 2015; 31(4): 2025-2030. DOI: 10.13005/ojc/310420.
(213) Starek-Świechowicz B, Budziszewska B, Starek, A. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacol Rep, 2017; 69: 1232–1239. DOI: 10.1016/j.pharep.2017.06.013
(214) World Health Organization (WHO).Dioxins and their effects on human health, 4 October 2016. World Health Organization. 20, Avenue Appia , 1211 Geneva 27, Switzerland
(215) Knutsen HK, Alexander J, Barregård L, et al. Risk for animal and human health related to the presence of dioxins and dioxin‐like PCBs in feed and food, EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA Journal, 2018; 16(11):5333. DOI: 10.2903/j.efsa.2018.5333.
(216) Pohjanvirta R, Viluksela M. Novel Aspects of Toxicity Mechanisms of Dioxins and Related Compounds. Int J Mo. Sci, 2020; 21: 2342-2347. DOI: 10.3390/ijms21072342.
(217) Heindel JJ, Blumberg B,Cave M, et al., Metabolism disrupting chemicals and metabolic disorders. Reproductive Toxicology, 2017; 68:3-33. DOI: 10.1016/j.reprotox .2016 .10 .001.
(218) Bilal M, Iqbal HMN. An Insight into Toxicity and Human-Health-Related Adverse Consequences of Cosmeceuticals: A Review. Sci Total Environ, 2019; 670:555-568. DOI: 10.1016 /j.scitotenv .2019.03.261.
(219) Frieri M, Kumar K, Boutin A. Antibiotic Resistance. J Infect Public Health, 2017; 10(4):369-378. DOI: 10.1016/j.jiph.2016.08.007.
(220) Maldonado-Torres S, Gurung R, Rijal H, et al.Fate, Transformation, and Toxicological Impacts of Pharmaceutical and Personal Care Products in Surface Waters. Environmental Health Insights, 2018; 12: 1–4. DOI: 10.1177/1178630218795836
(221) Chagnon M, Kreutzweiser D, Mitchell EAD, et al. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental Science and Pollution Research, 2015; 22: 119-134. DOI: 10.1007/s11356-014-3277-x.
(222) Gilbert, N. Global biodiversity report warns pollinators are under threat. Nat. News May 2017. DOI: 10.1038/nature.2016.19456.
(223) Malik, DS, Maurya, PK. Heavy metal concentration in water, sediment, and tissues of fish species (Heteropneustis fossilis and Puntius ticto) from Kali River. Toxicol Environ Chem, 2015; 96: 1195-1206.DOI: 10.1080/02772248.2015.1015296.
(224) Nabi Z, Youssouf M, Manzoor J. ‘Impact of Pesticides on Aquatic Life’ in Handbook of “Research on the Adverse Effects of Pesticide Pollution in Aquatic Ecosystems” 2019, pp. 170-181. DOI: 10.4018/978-1-5225-6111-
ch010.
(225) Ma J, Tong S, Wang P, et al.Toxicity of Seven Herbicides to the Three Cyanobacteria Anabaena flos-aquae, Microcystis flos-aquae and Mirocystis aeruginosa. International Journal of Environmental Research, 2010; 4: 347-352. DOI: 10.22059/IJER.2010.27.
(226) .Staley, ZR, Harwood, VJ, Rohr JR. A Synthesis of the Effects of Pesticides on Microbial Persistence in Aquatic Ecosystems. Crit Rev Toxicol, 2015; 45(10): 813–836. DOI: 10.3109/10408444. 2015.1065471.
(227) Ibrahim, L, Preuss, TG, Ratte, HT, et al. A list of fish species that are potentially exposed to pesticides in edge-of-field water bodies in the European Union-a first step towards identifying vulnerable representatives for risk assessment.Environmental Science and Pollution Research, 2013; 20: 2679-2687. DOI: 10.1007/s11356-013-1471-x.
(228) Petsas AS, Vagi MC. Effects on the Photosynthetic Activity of Algae after Exposure to Various Organic and Inorganic Pollutants: Review, Editors Eduardo Jacob-Lopes, Leila Queiroz Zepka and Maria Isabel Queiroz, IntechOpen, 2017. DOI: 10.5772/67991.
(229) Kaoga, J, Ouma, G, Abuom, P. Effects of Farm Pesticides on Water Quality in Lake Naivasha, Kenya. American Journal of Plant Physiology, 2013; 8 (3): 105-113.DOI: 10.3923/ajpp.2013.105.113
(230) . King-Heiden TC, Mehta V, Xiong KM, et al. Reproductive and Developmental Toxicity of Dioxin in Fish. Mol Cell Endocrinol, 2012; 354(1-2): 121–138. DOI: 10.1016/j.mce.2011.09.027.
(231) Rigaud C, Couillard CM, Pellerin J, et al. Applicability of the TCDD‐TEQ approach to predict sublethal embryotoxicity in Fundulus heteroclitus. Aquatic Toxicology (Amsterdam, Netherlands), 2014; 149: 133–144. DOI: 10.1016/j.aquatox.2014.02.002
(232) Daouk T, Larcher T, Roupsard F, et al. Long-term food-exposure of zebrafish to PCB mixtures mimicking some environmental situations induces ovary pathology and impairs reproduction ability. Aquatic Toxicology, 2011; 105: 270-278. DOI: 10.1016 /j.aquatox.2011.06.021.
(233) Nault R, Al-Hameedi S, Moon TW.Effects of polychlorinated biphenyls on whole animal energy mobilization and hepatic cellular respiration in rainbow trout, Oncorhynchus mykiss. Chemosphere, 2012; 87: 1057-1062. DOI: 10.1016/j.chemosphere.2012.02.012
(234) Krøvel AV, Bente LS, Torstensen E, et al. Endosulfan in vitro toxicity in Atlantic salmon hepatocytes obtained from fish fed either fish oil or vegetable oil. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2010; 151: 175-186. DOI: 10.1016/j.cbpc.2009.10.003.
(235) Ye RR, Lei ENY, Lam MHW, et al. Gender-specific modulation of immune system complement gene expression in marine medaka Oryzias melastigma following dietary exposure of BDE-47. Environ Sci Pollut Res, 2012; 19: 2477–2487. DOI: 10.1007/s11356-012-0887-z.
(236) Ghosh R, Lokman PL, Lamare MD, et al. Changes in physiological responses of an Antarctic fish, the emerald rock cod (Trematomus bernacchii), following exposure to polybrominated diphenyl ethers (PBDEs). Aquatic Toxicology, 2013; 128-129: 91-100.DOI: 10.1016/j.aquatox. 2012. 11.019.
(237) Torres L, Orazio CE, Peterman PH, et al. Effects of dietary exposure to brominated flame retardant BDE-47 on thyroid condition, gonadal development and growth of zebrafish. Fish Physiology Biochemistry, 2013; 39 (5): 1115-1128. DOI: 10.1007/s10695-012-9768-0
(238) Amy-Sagersa C, Reinhardta K, Larson DM. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor. Aquat Toxicol, 2017; 185: 76-85. DOI: 10.1016 /j. aquatox.2017.01.008.
(239) Carter LJ, Williams M, Böttcher C, et al. Uptake of Pharmaceuticals Influences Plant Development and
Affects Nutrient and Hormone Homeostases.Environ Sci Technol, 2015; 49(20):12509-12518. DOI: 10.1021/acs.est.5b03468.
(240) Eggen T, Lillo C. Antidiabetic II Drug Metformin in Plants: Uptake and Translocation to Edible Parts of Cereals, Oily Seeds, Beans, Tomato, Squash, Carrots, and Potatoes. J Agric Food Chem, 2012; 60(28):6929-35. DOI: 10.1021/jf301267c.
(241) Tasho RP, Ryu S-H, Cho J-Y.Effect of Sulfadimethoxine, Oxytetracycline, and Streptomycin Antibiotics in Three Types of Crop Plants—Root, Leafy, and Fruit. Appl. Sci, 2020; 10: 1111-1125. DOI: 10.3390/app10031111.
(242) Pirnie EF, Talley JW, Hundal LS.Transformation of DDT and its metabolites by various abiotic methods. Journal of Environmental Engineering, 2006; 132: 560-564.
(243) Belal E-SB, Shalaby ME, El-Gremi SM, et al.. Biodegradation of Organochlorine Pesticides by Paenibacillus sp. Strain.Environmental Engineering Science, 2018; 35: 1194-1205. DOI: 10.1089/ ees.2018.0111.
(244) Remucal CK. The role of indirect photochemical degradation in the environmental fate of pesticides: a review. Environ. Sci. Processes Impacts, 2014; 16: 628-653. DOI: 10.1039/C3EM00549F.
(245) Zayed S, Mostafa IY, El-Arab AE.Degradation and fate of 14C –DDT and 14C – DDE in Egyptian soil. Journal Environmental Science Health, 1994; B29:47-56.
(246) Miller LL, Narang RS.Induced photolysis of DDT. Science, 1970; 169: 368-370.
(247) Dureja, P, Mukerjee SK. Amine induced photodehalogenation of cycldiene insecticides. Tetrahedron Letters, 1986; 26:5211-5212.
(248) Kwon JW, Armbrust KL.Degradation of Chlorothalonil in Irradiated Water/ Sediment Systems. Journal Agriculture and Food Chemistry, 2006; 54: 3651-3657. DOI: 10.1021/jf052847q.
(249) Rivas J, Beltran FJ, Acedo B. Chemical and photochemical degradation of acenaphthylene: Intermediate identification. Journal of Hazardous Materials, 2000; 75(1): 89-98. DOI: 10.1016/s0304-3894(00)00196-5.
(250) Hassan SSM, El Azab WIM, Ali HR, Mansour MSM. In: The 18th International conference on petroleum, mineral resources and development. EPRI, Cairo, Egypt, 2015; 8–10.
(251) Manariotis ID, Karapanagioti HK, Chrysikopoulos CV. Degradation of PAHs by high frequency ultrasound. Water Research, 2011; 45: 2587-2594. DOI:10.1016/j.watres.2011.02.009.
(252) Nikitha T, Satyaprakash M, Satya Vani S, et al. A Review on Polycyclic Aromatic Hydrocarbons: Their Transport, Fate and Biodegradation in the Environment. International Journal Current Microbiology Applied
Science, 2017; 6(4): 1627-1639. DOI: 10.20546/ijcmas.2017.604.199.
(253) Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 2009; 169(1-3): 1-15. DOI: 10.1016/j.jhazmat.2009.03.137.
(254) Niu X, Ho SSH, Ho KF, et al. Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM 2.5 in the Beijing-Tianjin Hebei region. Environmental Pollution, 2017; 231: 1075-1084. DOI: 10.1016/j.envpol.2017.08.099.
(255) Rybnikova V, Usman M, Hanna K. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes. Environmental Science and Pollution Research, Springer Verlag, 2016; 23 (17): 17035 - 17048. DOI: 10.1007/s11356-016-6881-0ff. ffhal01376264f.
(256) Doctor N, Yang Y. Destruction of Polychlorinated Biphenyls under Subcritical Water Conditions in the Presence of Hydrogen Peroxide or Sodium Hydroxide. International Journal of Chemical Engineering and Applications, 2018; 9: 119-122. DOI: 10.18178/ijcea.2018.9.4.710.
(257) Li G, Xiong J, Wong PK, An T. Enhancing tetrabromobisphenol A biodegradation in river sediment microcosms and understanding the corresponding microbial community. Environ Pollut, 2016; 208: 796–802. DOI: 10.1016/j.envpol.2015.11.001.
(258) Starek-Świechowicz B, Budziszewska B, Starek, A. Hexachlorobenzene as a persistent organic pollutant: Toxicity and molecular mechanism of action. Pharmacol Rep, 2017; 69: 1232–1239. DOI: 10.1016/j.pharep.2017.06.013.
(259) Le TT, Murugesan K, Nam IH, et al. Degradation of dibenzofuran via multiple dioxygenation by a newly isolated Agrobacterium sp. PH-08. J ApplMicrobiol, 2014; 116:542–553. DOI: 10.1111/ jam. 12403
(260) Seong HJ, Kwon SW, Seo D, et al. Enzymatic defluorination of fluorinated compounds. Appl Biol Chem, 2019; 62:62-69. DOI: 10.1186/s13765-019-0469-6.
(261) Lutze HV, Brekenfeld J, Naumov S, et al..Degradation of perfluorinated compounds by sulfate radicals – New mechanistic aspects and economic considerations. Water Res, 2018; 129:509-519. DOI:10.1016/j.watres.2017.10.067.
(262) Ochoa-Herrera V, Field JA, Luna-Velasco A, et al. Microbial toxicity and biodegradability of perfluorooctanesulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs). Chemical and Environmental Engineering, 2016; 18: 1236-1246. DOI: 10.1039/c6em00366d
(263) Asif MB, Hai FI, Singh L, et al. Degradation of Pharmaceuticals and Personal Care Products by White-Rot Fungi—a Critical Review. Curr Pollution Rep, 2017; 3: 88–103. DOI: 10.1007 /s40726-017-0049-5.
(264) Hoang T, Tu LTC, Nga PL, et al. A preliminary study on the phytoremediation of antibiotic contaminated sediment. International Journal of Phytoremediation, 2013; 15(1):65-76. DOI: 10.1080/ 15226514.2012.670316.
(265) Dolliver H, Kumar K, Gupta S. Sulfamethazine uptake by plants from manure amended soil. J Environ Qual, 2007; 36:1224-1230. DOI: 10.2134/jeq2006.0266.
(266) Gujrathi NP, Haney B, Linden J.Phytoremediation potential of M.aquaticum and P. stratiotes to modify antibiotic growth promoters, tetracycline, and oxytetracycline in aqueous wastewater systems. Int J Phytorem, 2005; 7: 99-112. DOI: 10.1080/16226510590950405
(267) Farkas MH, Berry OM, Aga DS.Chlorotetracycline detoxification in maize via induction of glutathione S-transferases after antibiotic exposure. Environ Sci Technol Lett, 2007; 41:1450-1456. DOI: 10.1021/es061651j.
(268) Park H. Reduction of antibiotics using microorganisms containing glutathione S-transferases under immobilized conditions. Environ Toxicol Phar, 2012; 34:345-350.
(269) Nnenna F-P, Lekiah P, Obemeata O. Degradation of antibiotics by bacteria and fungi from the aquatic environment. J Toxico Env Health Sci, 2011; 3:275-285.
(270) Park H, Choung Y-K.Evaluation of the biodegradation feasibility of antibiotics by three bacteria involving glutathione S-transferases. Canadian Journal of Civil Engineering, 2010: 37(5): 814-819.DOI: 10.1139/L10-033.
(271) Bansal OP.Green Remediation of Tetracyclines in Soil –Water systems. Health, 2013; 5: 2039-2044. DOI: 10.4236/health.2013.512276.
(272) Datta R, Das P, Smith S, et al. Phytoremdiation potential of tetracycline by vetiver grass (Chrysopogan zizanioides L.) for tetracycline. Int J Phytorem, 2013; 15:343-351.
(273) Makhijani M, Gahalwat S, Chauhan K, et al. Phtoremediation potential of Cicer arietinum for tetracycline. International Journal of Genetic Engineering and Biotechnology, 2014; 5: 153-160.
(274) Shikha S, Gauba P. Phytoremediation of Pharmaceutical Products. Innivare Journal of Life science, 2016; 4: 14-17.
(275) Li Y, Zhang J-R, Wu Y-H, et al. Review on antibiotic pollution and phytoremediation in coastal wetland. 2nd International Conference on Environmental Science and Engineering, 2017: p.272-276.
(276) Chen XJ, Li FY, Hao HB. Preparation of two aquatic plants to antimicrobial contaiminated water. Subtropical Plant Science, 2012; 41: 1-7.
(277) Sun C, Zhang J, Ma Q, et al. Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: sediment-water partitioning, source identification and environmental health risk assessment. Environ Geochem Health, 2017; 39(1):63-74. DOI: 10.1007/s10653-016-9807-3.
(278) Hirth N, Topp E, Dorfler U, et al.An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil.Chemical and Biological Technologies in Agriculture, 2016; 3:29-39.